IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v349y2023ics0306261923010073.html
   My bibliography  Save this article

Green energy mix modeling under supply uncertainty: Hybrid system dynamics and adaptive PSO approach

Author

Listed:
  • Rizqi, Zakka Ugih
  • Chou, Shuo-Yan
  • Yu, Tiffany Hui-Kuang

Abstract

Reducing global warming is crucial for sustainability. Carbon emissions primarily stem from energy supply, prompting a shift from Non-Renewable Energy Supply (NRES) to Renewable Energy Supply (RES). However, transitioning to RES entails substantial investment and faces supply uncertainty due to weather dependency. Therefore, the transition should be done gradually, requiring a reliable approach to energy mix modeling. This study proposes a System Dynamics framework integrated with Adaptive Particle Swarm Optimization (APSO) and Machine Learning to optimize the energy mix under supply uncertainty. Due to energy system dynamicity, the proposed framework considers not only supply, but also demand, energy storage, electric vehicle, and emission subsystems. The experiment has been conducted by taking the United States as a case under various scenarios namely to minimize the total system cost, total carbon emissions, and both, accounting for the static and dynamic cost of RES. Results of this study reveal four main points: (i) A 38% reduction in total system cost is achievable by decreasing the RES Ratio to 6%, but total emissions will rise by 8%; (ii) A 55% reduction in total emissions is possible by directly transitioning to 100% RES, but total system cost increases by 68%; (iii) Both objective functions can be significantly minimized at a time by increasing the RES ratio; (iv) Dynamic cost offers a better opportunity for reducing costs and emissions than static cost.

Suggested Citation

  • Rizqi, Zakka Ugih & Chou, Shuo-Yan & Yu, Tiffany Hui-Kuang, 2023. "Green energy mix modeling under supply uncertainty: Hybrid system dynamics and adaptive PSO approach," Applied Energy, Elsevier, vol. 349(C).
  • Handle: RePEc:eee:appene:v:349:y:2023:i:c:s0306261923010073
    DOI: 10.1016/j.apenergy.2023.121643
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923010073
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121643?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Shiwei & Wei, Yi-ming, 2012. "Prediction of China's coal production-environmental pollution based on a hybrid genetic algorithm-system dynamics model," Energy Policy, Elsevier, vol. 42(C), pages 521-529.
    2. Selim nay & Ahmet Y cekaya & Ay e Bilge & Esra A ca Aktun, 2021. "A Supply and Demand Analysis for the Turkish Electricity Market: Supply Adequacy and Resource Utilization," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 315-327.
    3. Satyajith Amaran & Nikolaos V. Sahinidis & Bikram Sharda & Scott J. Bury, 2016. "Simulation optimization: a review of algorithms and applications," Annals of Operations Research, Springer, vol. 240(1), pages 351-380, May.
    4. Pereira, Adelino J.C. & Saraiva, João Tomé, 2011. "Generation expansion planning (GEP) – A long-term approach using system dynamics and genetic algorithms (GAs)," Energy, Elsevier, vol. 36(8), pages 5180-5199.
    5. Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Tan, Kang Miao & Mithulananthan, N., 2015. "A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 365-385.
    6. Batas Bjelić, Ilija & Rajaković, Nikola, 2015. "Simulation-based optimization of sustainable national energy systems," Energy, Elsevier, vol. 91(C), pages 1087-1098.
    7. Abubakar Umar & Zhanqun Shi & Alhadi Khlil & Zulfiqar I. B. Farouk, 2020. "Developing a New Robust Swarm-Based Algorithm for Robot Analysis," Mathematics, MDPI, vol. 8(2), pages 1-30, January.
    8. Pratama, Yoga Wienda & Purwanto, Widodo Wahyu & Tezuka, Tetsuo & McLellan, Benjamin Craig & Hartono, Djoni & Hidayatno, Akhmad & Daud, Yunus, 2017. "Multi-objective optimization of a multiregional electricity system in an archipelagic state: The role of renewable energy in energy system sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 423-439.
    9. Yi-Tui Chen, 2017. "The Factors Affecting Electricity Consumption and the Consumption Characteristics in the Residential Sector—A Case Example of Taiwan," Sustainability, MDPI, vol. 9(8), pages 1-16, August.
    10. Liu, Xiaoping & Ou, Jinpei & Li, Xia & Ai, Bin, 2013. "Combining system dynamics and hybrid particle swarm optimization for land use allocation," Ecological Modelling, Elsevier, vol. 257(C), pages 11-24.
    11. Juan Felipe Parra & Patricia Jaramillo & Santiago Arango-Aramburo, 2018. "Metaheuristic optimization methods for calibration of system dynamics models," Journal of Simulation, Taylor & Francis Journals, vol. 12(2), pages 190-209, April.
    12. Cany, C. & Mansilla, C. & Mathonnière, G. & da Costa, P., 2018. "Nuclear contribution to the penetration of variable renewable energy sources in a French decarbonised power mix," Energy, Elsevier, vol. 150(C), pages 544-555.
    13. Armin Leopold, 2016. "Energy related system dynamic models: a literature review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 231-261, March.
    14. Delgarm, N. & Sajadi, B. & Kowsary, F. & Delgarm, S., 2016. "Multi-objective optimization of the building energy performance: A simulation-based approach by means of particle swarm optimization (PSO)," Applied Energy, Elsevier, vol. 170(C), pages 293-303.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Ran & Wang, Kai & Xu, Xu & Yu, Zi-Tao & Lin, Qingyang, 2024. "Triple-layer optimization of distributed photovoltaic energy storage capacity for manufacturing enterprises considering carbon emissions and load management," Applied Energy, Elsevier, vol. 364(C).
    2. He, Jiawei & Mu, Rui & Li, Bin & Li, Ye & Zhou, Bohao & Xie, Zhongrun & Wang, Wenbo, 2024. "Applicability boundary calculation for directional current protection in distribution networks with accessed PV power sources," Applied Energy, Elsevier, vol. 370(C).
    3. Lujano-Rojas, Juan M. & Dufo-López, Rodolfo & Artal-Sevil, Jesús Sergio & García-Paricio, Eduardo, 2024. "Design of small-scale hybrid energy systems taking into account generation and demand uncertainties," Renewable Energy, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Sadollah & Mohammad Nasir & Zong Woo Geem, 2020. "Sustainability and Optimization: From Conceptual Fundamentals to Applications," Sustainability, MDPI, vol. 12(5), pages 1-34, March.
    2. Noordhoek, Marije & Dullaert, Wout & Lai, David S.W. & de Leeuw, Sander, 2018. "A simulation–optimization approach for a service-constrained multi-echelon distribution network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 292-311.
    3. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Guadalupe Azuara García & Efrén Palacios Rosas & Alfonso García-Ferrer & Pilar Montesinos Barrios, 2017. "Multi-Objective Spatial Optimization: Sustainable Land Use Allocation at Sub-Regional Scale," Sustainability, MDPI, vol. 9(6), pages 1-21, June.
    5. Huo, Jinbiao & Liu, Chengqi & Chen, Jingxu & Meng, Qiang & Wang, Jian & Liu, Zhiyuan, 2023. "Simulation-based dynamic origin–destination matrix estimation on freeways: A Bayesian optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    6. Berna Tektaş & Hasan Hüseyin Turan & Nihat Kasap & Ferhan Çebi & Dursun Delen, 2022. "A Fuzzy Prescriptive Analytics Approach to Power Generation Capacity Planning," Energies, MDPI, vol. 15(9), pages 1-26, April.
    7. Schito, Eva & Conti, Paolo & Testi, Daniele, 2018. "Multi-objective optimization of microclimate in museums for concurrent reduction of energy needs, visitors’ discomfort and artwork preservation risks," Applied Energy, Elsevier, vol. 224(C), pages 147-159.
    8. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    9. Chang, Kuo-Hao & Kuo, Po-Yi, 2018. "An efficient simulation optimization method for the generalized redundancy allocation problem," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1094-1101.
    10. Chenhao Zhu & Jonah Susskind & Mario Giampieri & Hazel Backus O’Neil & Alan M. Berger, 2023. "Optimizing Sustainable Suburban Expansion with Autonomous Mobility through a Parametric Design Framework," Land, MDPI, vol. 12(9), pages 1-31, September.
    11. Saurbayeva, Assemgul & Memon, Shazim Ali & Kim, Jong, 2023. "Integrated multi-stage sensitivity analysis and multi-objective optimization approach for PCM integrated residential buildings in different climate zones," Energy, Elsevier, vol. 278(PB).
    12. Tan, Kang Miao & Padmanaban, Sanjeevikumar & Yong, Jia Ying & Ramachandaramurthy, Vigna K., 2019. "A multi-control vehicle-to-grid charger with bi-directional active and reactive power capabilities for power grid support," Energy, Elsevier, vol. 171(C), pages 1150-1163.
    13. Tong Koecklin, Manuel & Fitiwi, Desta & de Carolis, Joseph F. & Curtis, John, 2020. "Renewable electricity generation and transmission network developments in light of public opposition: Insights from Ireland," Papers WP653, Economic and Social Research Institute (ESRI).
    14. Gupta, Monika & Bandyopadhyay, Kaushik Ranjan & Singh, Sanjay K., 2019. "Measuring effectiveness of carbon tax on Indian road passenger transport: A system dynamics approach," Energy Economics, Elsevier, vol. 81(C), pages 341-354.
    15. Irene M. Zarco-Soto & Fco. Javier Zarco-Soto & Pedro J. Zarco-Periñán, 2021. "Influence of Population Income on Energy Consumption and CO 2 Emissions in Buildings of Cities," Sustainability, MDPI, vol. 13(18), pages 1-18, September.
    16. Yu, Shiwei & Wei, Yi-Ming & Guo, Haixiang & Ding, Liping, 2014. "Carbon emission coefficient measurement of the coal-to-power energy chain in China," Applied Energy, Elsevier, vol. 114(C), pages 290-300.
    17. David J. Eckman & Shane G. Henderson & Sara Shashaani, 2023. "Diagnostic Tools for Evaluating and Comparing Simulation-Optimization Algorithms," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 350-367, March.
    18. Ju Wang & Tongnan Li & Zhuoqiong Li & Chunsheng Fang, 2022. "Study on the Spatial and Temporal Distribution Characteristics and Influencing Factors of Particulate Matter Pollution in Coal Production Cities in China," IJERPH, MDPI, vol. 19(6), pages 1-14, March.
    19. Roth, Jonathan & Martin, Amory & Miller, Clayton & Jain, Rishee K., 2020. "SynCity: Using open data to create a synthetic city of hourly building energy estimates by integrating data-driven and physics-based methods," Applied Energy, Elsevier, vol. 280(C).
    20. Niemelä, Tuomo & Kosonen, Risto & Jokisalo, Juha, 2016. "Cost-optimal energy performance renovation measures of educational buildings in cold climate," Applied Energy, Elsevier, vol. 183(C), pages 1005-1020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:349:y:2023:i:c:s0306261923010073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.