IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v150y2018icp38-48.html
   My bibliography  Save this article

Numerical simulation on thermoelectric and mechanical performance of annular thermoelectric generator

Author

Listed:
  • Fan, Shifa
  • Gao, Yuanwen

Abstract

In this paper, a three dimensional finite element model of annular thermoelectric devices is established to optimize the geometric dimensions and the number of thermocouples for the enhancement of the thermoelectric performance and mechanical reliability. The influences of geometric dimensions and the number of the thermocouples on the thermoelectric performance and the mechanical reliability of annular thermoelectric generators are investigated, respectively. The numerical results indicate that with the increasing the angle ratio of the thermoelectric leg, the maximum von Mises stress in the legs of thermocouples decreases first and then increases, and the thermoelectric performance of the annular thermocouple can be significantly improved. In addition, increasing the length of legs of thermocouples would reduce the thermoelectric performance, but improve the mechanical reliability of annular thermocouples. For the whole annular thermoelectric generator, there exists different optimal number of thermocouples to enhance the thermoelectric performance for different external resistance. The number of thermocouples has little influence on the maximum von Mises stress in the legs of annular thermoelectric generators. Finally, the optimal geometric dimensions of the annular thermoelectric generator with high thermoelectric and mechanical performance are also discussed. These results can provide some guidance for the optimization design of annular thermoelectric generators.

Suggested Citation

  • Fan, Shifa & Gao, Yuanwen, 2018. "Numerical simulation on thermoelectric and mechanical performance of annular thermoelectric generator," Energy, Elsevier, vol. 150(C), pages 38-48.
  • Handle: RePEc:eee:energy:v:150:y:2018:i:c:p:38-48
    DOI: 10.1016/j.energy.2018.02.124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421830358X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.02.124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erturun, Ugur & Erermis, Kaan & Mossi, Karla, 2015. "Influence of leg sizing and spacing on power generation and thermal stresses of thermoelectric devices," Applied Energy, Elsevier, vol. 159(C), pages 19-27.
    2. Liu, Zhichun & Zhu, Shiping & Ge, Ya & Shan, Feng & Zeng, Lingping & Liu, Wei, 2017. "Geometry optimization of two-stage thermoelectric generators using simplified conjugate-gradient method," Applied Energy, Elsevier, vol. 190(C), pages 540-552.
    3. Ibrahim, Amin & Rahnamayan, Shahryar & Vargas Martin, Miguel & Yilbas, Bekir, 2014. "Multi-objective thermal analysis of a thermoelectric device: Influence of geometric features on device characteristics," Energy, Elsevier, vol. 77(C), pages 305-317.
    4. Ali, Haider & Yilbas, Bekir Sami & Al-Sulaiman, Fahad A., 2016. "Segmented thermoelectric generator: Influence of pin shape configuration on the device performance," Energy, Elsevier, vol. 111(C), pages 439-452.
    5. Yilbas, B.S. & Sahin, A.Z., 2010. "Thermoelectric device and optimum external load parameter and slenderness ratio," Energy, Elsevier, vol. 35(12), pages 5380-5384.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Kun & Yin, Deshun & Song, Haopeng & Schiavone, Peter & Wu, Xun & Yuan, Lili, 2022. "Seeking high energy conversion efficiency in a fully temperature-dependent thermoelectric medium," Energy, Elsevier, vol. 239(PE).
    2. Gong, Tingrui & Wu, Yongjia & Gao, Lei & Zhang, Long & Li, Juntao & Ming, Tingzhen, 2019. "Thermo-mechanical analysis on a compact thermoelectric cooler," Energy, Elsevier, vol. 172(C), pages 1211-1224.
    3. Yang, Wenlong & Zhu, WenChao & Li, Yang & Zhang, Leiqi & Zhao, Bo & Xie, Changjun & Yan, Yonggao & Huang, Liang, 2022. "Annular thermoelectric generator performance optimization analysis based on concentric annular heat exchanger," Energy, Elsevier, vol. 239(PB).
    4. Huang, Xiao-Yan & Zhou, Ze-Yu & Shu, Zheng-Yu & Cai, Yang & Lv, You & Wang, Wei-Wei & Zhao, Fu-Yun, 2024. "A phase change material based annular thermoelectric energy harvester from ambient temperature fluctuations: Transient modeling and critical characteristics," Renewable Energy, Elsevier, vol. 222(C).
    5. Xu, Aoqi & Xie, Changjun & Xie, Liping & Zhu, Wenchao & Xiong, Binyu & Gooi, Hoay Beng, 2024. "Performance prediction and optimization of annular thermoelectric generators based on a comprehensive surrogate model," Energy, Elsevier, vol. 290(C).
    6. Chen, Wei-Hsin & Lin, Yi-Xian & Wang, Xiao-Dong & Lin, Yu-Li, 2019. "A comprehensive analysis of the performance of thermoelectric generators with constant and variable properties," Applied Energy, Elsevier, vol. 241(C), pages 11-24.
    7. Yusuf, Aminu & Ballikaya, Sedat, 2022. "Electrical, thermomechanical and cost analyses of a low-cost thermoelectric generator," Energy, Elsevier, vol. 241(C).
    8. Jia, Xiaodong & Guo, Qiuting, 2020. "Design study of Bismuth-Telluride-based thermoelectric generators based on thermoelectric and mechanical performance," Energy, Elsevier, vol. 190(C).
    9. Massaguer, E. & Massaguer, A. & Pujol, T. & Comamala, M. & Montoro, L. & Gonzalez, J.R., 2019. "Fuel economy analysis under a WLTP cycle on a mid-size vehicle equipped with a thermoelectric energy recovery system," Energy, Elsevier, vol. 179(C), pages 306-314.
    10. Fan, Shifa & Gao, Yuanwen, 2019. "Numerical analysis on the segmented annular thermoelectric generator for waste heat recovery," Energy, Elsevier, vol. 183(C), pages 35-47.
    11. Shittu, Samson & Li, Guiqiang & Xuan, Qindong & Zhao, Xudong & Ma, Xiaoli & Cui, Yu, 2020. "Electrical and mechanical analysis of a segmented solar thermoelectric generator under non-uniform heat flux," Energy, Elsevier, vol. 199(C).
    12. Shen, Zu-Guo & Liu, Xun & Chen, Shuai & Wu, Shuang-Ying & Xiao, Lan & Chen, Zu-Xiang, 2018. "Theoretical analysis on a segmented annular thermoelectric generator," Energy, Elsevier, vol. 157(C), pages 297-313.
    13. Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2020. "Review of thermoelectric geometry and structure optimization for performance enhancement," Applied Energy, Elsevier, vol. 268(C).
    14. Jia, Yuan & Wang, Baojie & Tian, Jinpeng & Song, Qiuming & Chen, Yulong & Zhang, Wenwei & Wang, Cheng & Sun, Hao & Zhang, Zhixing, 2024. "A thermal conductivity varying 3D numerical model for parametric study of a silicon-based nano thermoelectric generator," Energy, Elsevier, vol. 293(C).
    15. Guo, Rui & Zhuo, Kai & Li, Qiang & Wang, Tao & Sang, Shengbo & Zhang, Hulin, 2023. "Triboelectric-electromagnetic hybrid generator assisted by a shape memory alloy wire for water quality monitoring and waste heat collecting," Applied Energy, Elsevier, vol. 348(C).
    16. Aljaghtham, Mutabe & Celik, Emrah, 2022. "Design of cascade thermoelectric generation systems with improved thermal reliability," Energy, Elsevier, vol. 243(C).
    17. Chun-I Wu & Kung-Wen Du & Yu-Hsuan Tu, 2024. "Enhanced Energy Harvesting from Thermoelectric Modules: Strategic Manipulation of Element Quantity and Geometry for Optimized Power Output," Energies, MDPI, vol. 17(21), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali, Haider & Yilbas, Bekir Sami & Al-Sharafi, Abdullah, 2017. "Innovative design of a thermoelectric generator with extended and segmented pin configurations," Applied Energy, Elsevier, vol. 187(C), pages 367-379.
    2. Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2020. "Review of thermoelectric geometry and structure optimization for performance enhancement," Applied Energy, Elsevier, vol. 268(C).
    3. Yilbas, Bekir Sami & Akhtar, S.S. & Sahin, A.Z., 2016. "Thermal and stress analyses in thermoelectric generator with tapered and rectangular pin configurations," Energy, Elsevier, vol. 114(C), pages 52-63.
    4. Jia, Xiao-Dong & Wang, Yuan-Jing & Gao, Yuan-Wen, 2017. "Numerical simulation of thermoelectric performance of linear-shaped thermoelectric generators under transient heat supply," Energy, Elsevier, vol. 130(C), pages 276-285.
    5. N. Kanagaraj & Hegazy Rezk & Mohamed R. Gomaa, 2020. "A Variable Fractional Order Fuzzy Logic Control Based MPPT Technique for Improving Energy Conversion Efficiency of Thermoelectric Power Generator," Energies, MDPI, vol. 13(17), pages 1-18, September.
    6. Shittu, Samson & Li, Guiqiang & Xuan, Qindong & Zhao, Xudong & Ma, Xiaoli & Cui, Yu, 2020. "Electrical and mechanical analysis of a segmented solar thermoelectric generator under non-uniform heat flux," Energy, Elsevier, vol. 199(C).
    7. Shen, Zu-Guo & Liu, Xun & Chen, Shuai & Wu, Shuang-Ying & Xiao, Lan & Chen, Zu-Xiang, 2018. "Theoretical analysis on a segmented annular thermoelectric generator," Energy, Elsevier, vol. 157(C), pages 297-313.
    8. Ma, Xiaonan & Shu, Gequn & Tian, Hua & Xu, Wen & Chen, Tianyu, 2019. "Performance assessment of engine exhaust-based segmented thermoelectric generators by length ratio optimization," Applied Energy, Elsevier, vol. 248(C), pages 614-625.
    9. Shen, Zu-Guo & Wu, Shuang-Ying & Xiao, Lan & Yin, Gang, 2016. "Theoretical modeling of thermoelectric generator with particular emphasis on the effect of side surface heat transfer," Energy, Elsevier, vol. 95(C), pages 367-379.
    10. Ravi Anant Kishore & Roop L. Mahajan & Shashank Priya, 2018. "Combinatory Finite Element and Artificial Neural Network Model for Predicting Performance of Thermoelectric Generator," Energies, MDPI, vol. 11(9), pages 1-17, August.
    11. Shu, Gequn & Ma, Xiaonan & Tian, Hua & Yang, Haoqi & Chen, Tianyu & Li, Xiaoya, 2018. "Configuration optimization of the segmented modules in an exhaust-based thermoelectric generator for engine waste heat recovery," Energy, Elsevier, vol. 160(C), pages 612-624.
    12. Chen, Wei-Hsin & Wang, Chi-Ming & Lee, Da-Sheng & Kwon, Eilhann E. & Ashokkumar, Veeramuthu & Culaba, Alvin B., 2022. "Optimization design by evolutionary computation for minimizing thermal stress of a thermoelectric generator with varied numbers of square pin fins," Applied Energy, Elsevier, vol. 314(C).
    13. Ge, Ya & Lin, Yousheng & He, Qing & Wang, Wenhao & Chen, Jiechao & Huang, Si-Min, 2021. "Geometric optimization of segmented thermoelectric generators for waste heat recovery systems using genetic algorithm," Energy, Elsevier, vol. 233(C).
    14. Zhao, Dongliang & Yin, Xiaobo & Xu, Jingtao & Tan, Gang & Yang, Ronggui, 2020. "Radiative sky cooling-assisted thermoelectric cooling system for building applications," Energy, Elsevier, vol. 190(C).
    15. Wang, Xue & Wang, Hongchao & Su, Wenbing & Chen, Tingting & Tan, Chang & Madre, María A. & Sotelo, Andres & Wang, Chunlei, 2022. "U-type unileg thermoelectric module: A novel structure for high-temperature application with long lifespan," Energy, Elsevier, vol. 238(PB).
    16. Twaha, Ssennoga & Zhu, Jie & Yan, Yuying & Li, Bo, 2016. "A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 698-726.
    17. Lee, HoSung, 2013. "Optimal design of thermoelectric devices with dimensional analysis," Applied Energy, Elsevier, vol. 106(C), pages 79-88.
    18. Ge, Ya & Liu, Zhichun & Sun, Henan & Liu, Wei, 2018. "Optimal design of a segmented thermoelectric generator based on three-dimensional numerical simulation and multi-objective genetic algorithm," Energy, Elsevier, vol. 147(C), pages 1060-1069.
    19. Sun, Henan & Ge, Ya & Liu, Wei & Liu, Zhichun, 2019. "Geometric optimization of two-stage thermoelectric generator using genetic algorithms and thermodynamic analysis," Energy, Elsevier, vol. 171(C), pages 37-48.
    20. Ibáñez-Puy, Elia & Martín-Gómez, César & Bermejo-Busto, Javier & Zuazua-Ros, Amaia, 2018. "Thermal and energy performance assessment of a thermoelectric heat pump integrated in an adiabatic box," Applied Energy, Elsevier, vol. 228(C), pages 681-688.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:150:y:2018:i:c:p:38-48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.