IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i21p5453-d1511411.html
   My bibliography  Save this article

Enhanced Energy Harvesting from Thermoelectric Modules: Strategic Manipulation of Element Quantity and Geometry for Optimized Power Output

Author

Listed:
  • Chun-I Wu

    (Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan
    These authors contributed equally to this work.)

  • Kung-Wen Du

    (Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan
    These authors contributed equally to this work.)

  • Yu-Hsuan Tu

    (Department of Green Energy and Information Technology, National Taitung University, Taitung 95092, Taiwan)

Abstract

Rising environmental concerns and increasing electricity generation costs have sparked significant interest in waste heat recovery systems, particularly thermoelectric modules. Given the challenge of breakthroughs in thermoelectric materials, improving module structure has become a key strategy for enhancing efficiency. This study examines the commercially available TGM1-127-1.0-0.8 thermoelectric module through comparative simulation of flat plate and annular configurations. By maintaining consistent conditions across designs—including total volume of thermoelectric material, element geometry, heat source contact area, temperature differential, and connecting copper plate volume—we investigated the relationship between thermoelectric element quantity and module performance. Results demonstrate that the number of thermoelectric elements not only determines the open-circuit voltage but also significantly influences output power. Notably, the output power trend remains consistent across temperature differentials, independent of load resistance variations, suggesting a fundamental relationship between element quantity and module efficiency.

Suggested Citation

  • Chun-I Wu & Kung-Wen Du & Yu-Hsuan Tu, 2024. "Enhanced Energy Harvesting from Thermoelectric Modules: Strategic Manipulation of Element Quantity and Geometry for Optimized Power Output," Energies, MDPI, vol. 17(21), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5453-:d:1511411
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/21/5453/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/21/5453/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tian, Xiao-Xiao & Asaadi, Soheil & Moria, Hazim & Kaood, Amr & Pourhedayat, Samira & Jermsittiparsert, Kittisak, 2020. "Proposing tube-bundle arrangement of tubular thermoelectric module as a novel air cooler," Energy, Elsevier, vol. 208(C).
    2. Dai, Dan & Zhou, Yixin & Liu, Jing, 2011. "Liquid metal based thermoelectric generation system for waste heat recovery," Renewable Energy, Elsevier, vol. 36(12), pages 3530-3536.
    3. Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2020. "Review of thermoelectric geometry and structure optimization for performance enhancement," Applied Energy, Elsevier, vol. 268(C).
    4. Huang, Shouyuan & Xu, Xianfan, 2017. "A regenerative concept for thermoelectric power generation," Applied Energy, Elsevier, vol. 185(P1), pages 119-125.
    5. Fan, Shifa & Gao, Yuanwen, 2018. "Numerical simulation on thermoelectric and mechanical performance of annular thermoelectric generator," Energy, Elsevier, vol. 150(C), pages 38-48.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Xiao-Yan & Zhou, Ze-Yu & Shu, Zheng-Yu & Cai, Yang & Lv, You & Wang, Wei-Wei & Zhao, Fu-Yun, 2024. "A phase change material based annular thermoelectric energy harvester from ambient temperature fluctuations: Transient modeling and critical characteristics," Renewable Energy, Elsevier, vol. 222(C).
    2. Yang, Wenlong & Zhu, WenChao & Li, Yang & Zhang, Leiqi & Zhao, Bo & Xie, Changjun & Yan, Yonggao & Huang, Liang, 2022. "Annular thermoelectric generator performance optimization analysis based on concentric annular heat exchanger," Energy, Elsevier, vol. 239(PB).
    3. Ding, L.C. & Akbarzadeh, A. & Tan, L., 2018. "A review of power generation with thermoelectric system and its alternative with solar ponds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 799-812.
    4. Wang, Xue & Zong, Yujie & Su, Wenbin & Wang, Chunlei & Wang, Hongchao, 2024. "Output and mechanical performance of thermoelectric generator under transient heat loads," Renewable Energy, Elsevier, vol. 222(C).
    5. Nie, Wenjie & Lü, Ke & Chen, Aixi & He, Jizhou & Lan, Yueheng, 2018. "Performance optimization of single and two-stage micro/nano-scaled heat pumps with internal and external irreversibilities," Applied Energy, Elsevier, vol. 232(C), pages 695-703.
    6. Xuan, Zhiwei & Ge, Minghui & Zhao, Chenyang & Li, Yanzhe & Wang, Shixue & Zhao, Yulong, 2024. "Effect of nonuniform solar radiation on the performance of solar thermoelectric generators," Energy, Elsevier, vol. 290(C).
    7. Duan, Mengfan & Sun, Hongli & Lin, Borong & Wu, Yifan, 2021. "Evaluation on the applicability of thermoelectric air cooling systems for buildings with thermoelectric material optimization," Energy, Elsevier, vol. 221(C).
    8. Luo, Yang & Li, Linlin & Chen, Yiping & Kim, Chang Nyung, 2022. "Influence of geometric parameter and contact resistances on the thermal-electric behavior of a segmented TEG," Energy, Elsevier, vol. 254(PC).
    9. Twaha, Ssennoga & Zhu, Jie & Yan, Yuying & Li, Bo, 2016. "A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 698-726.
    10. Kashif Irshad, 2021. "Performance Improvement of Thermoelectric Air Cooler System by Using Variable-Pulse Current for Building Applications," Sustainability, MDPI, vol. 13(17), pages 1-13, August.
    11. Ahmed Hassan & Mohammad Shakeel Laghari & Yasir Rashid, 2016. "Micro-Encapsulated Phase Change Materials: A Review of Encapsulation, Safety and Thermal Characteristics," Sustainability, MDPI, vol. 8(10), pages 1-32, October.
    12. Song, Kun & Yin, Deshun & Song, Haopeng & Schiavone, Peter & Wu, Xun & Yuan, Lili, 2022. "Seeking high energy conversion efficiency in a fully temperature-dependent thermoelectric medium," Energy, Elsevier, vol. 239(PE).
    13. Mubarak Ismail & Metkel Yebiyo & Issa Chaer, 2021. "A Review of Recent Advances in Emerging Alternative Heating and Cooling Technologies," Energies, MDPI, vol. 14(2), pages 1-24, January.
    14. Costa, Sol Carolina & Kenisarin, Murat, 2022. "A review of metallic materials for latent heat thermal energy storage: Thermophysical properties, applications, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    15. Tayfun Uyanık & Emir Ejder & Yasin Arslanoğlu & Yunus Yalman & Yacine Terriche & Chun-Lien Su & Josep M. Guerrero, 2022. "Thermoelectric Generators as an Alternative Energy Source in Shipboard Microgrids," Energies, MDPI, vol. 15(12), pages 1-14, June.
    16. Xu, Aoqi & Xie, Changjun & Xie, Liping & Zhu, Wenchao & Xiong, Binyu & Gooi, Hoay Beng, 2024. "Performance prediction and optimization of annular thermoelectric generators based on a comprehensive surrogate model," Energy, Elsevier, vol. 290(C).
    17. Yusuf, Aminu & Ballikaya, Sedat, 2022. "Electrical, thermomechanical and cost analyses of a low-cost thermoelectric generator," Energy, Elsevier, vol. 241(C).
    18. Ye-Qi Zhang & Jiao Sun & Guang-Xu Wang & Tian-Hu Wang, 2022. "Advantage of a Thermoelectric Generator with Hybridization of Segmented Materials and Irregularly Variable Cross-Section Design," Energies, MDPI, vol. 15(8), pages 1-18, April.
    19. Zhong, Fanghao & Liu, Zhuo & Zhao, Shuqi & Ai, Tianchao & Zou, Haoyu & Qu, Ming & Wei, Xiang & Song, Yangfan & Chen, Hongwei, 2024. "A novel concentrated photovoltaic and ionic thermocells hybrid system for full-spectrum solar cascade utilization," Applied Energy, Elsevier, vol. 363(C).
    20. Zhu, Yuxiao & Newbrook, Daniel W. & Dai, Peng & de Groot, C.H. Kees & Huang, Ruomeng, 2022. "Artificial neural network enabled accurate geometrical design and optimisation of thermoelectric generator," Applied Energy, Elsevier, vol. 305(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5453-:d:1511411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.