IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v172y2019icp1211-1224.html
   My bibliography  Save this article

Thermo-mechanical analysis on a compact thermoelectric cooler

Author

Listed:
  • Gong, Tingrui
  • Wu, Yongjia
  • Gao, Lei
  • Zhang, Long
  • Li, Juntao
  • Ming, Tingzhen

Abstract

Thermoelectric cooler (TEC) is a solid-state component that utilizes Peltier effect to dissipate the heat of the electronic packaging system. It shows unique advantages over conventional cooling technology by quiet operation, long lifetime, and ease of integration. However, the internal heat accumulation caused by Joule heat exposes the TEC to the risk of thermal-mechanical failure during long-term operation in realistic thermal environment. In this paper, a heat-generating chip was employed to the cold-end of the module to serve as the finite thermal load while the heat sink at the hot-end was modeled by heat transfer coefficient. Based on the thermoelectric (TE) and thermal stress analyses, we developed a three-dimensional numerical model of a compact TEC, which took into account the temperature dependent TE material properties. It was found that the thermal load attached to Peltier junction can cause extreme high levels of thermal stress, which might cause dislocations and cracks of the material layers. The influences of electrical current, leg length, ceramic plate and bonding layers on the thermal stress levels were examined. These results presented an optimized design with predictive thermo-mechanical performance to realize minimum thermal stress levels, which provided a useful guide to achieve high reliability in a compact TEC.

Suggested Citation

  • Gong, Tingrui & Wu, Yongjia & Gao, Lei & Zhang, Long & Li, Juntao & Ming, Tingzhen, 2019. "Thermo-mechanical analysis on a compact thermoelectric cooler," Energy, Elsevier, vol. 172(C), pages 1211-1224.
  • Handle: RePEc:eee:energy:v:172:y:2019:i:c:p:1211-1224
    DOI: 10.1016/j.energy.2019.02.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219302038
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.02.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martinez, Alvaro & Astrain, David & Aranguren, Patricia, 2016. "Thermoelectric self-cooling for power electronics: Increasing the cooling power," Energy, Elsevier, vol. 112(C), pages 1-7.
    2. Liu, Di & Cai, Yang & Zhao, Fu-Yun, 2017. "Optimal design of thermoelectric cooling system integrated heat pipes for electric devices," Energy, Elsevier, vol. 128(C), pages 403-413.
    3. Liu, Di & Zhao, Fu-Yun & Yang, Hong-Xing & Tang, Guang-Fa, 2015. "Thermoelectric mini cooler coupled with micro thermosiphon for CPU cooling system," Energy, Elsevier, vol. 83(C), pages 29-36.
    4. Huang, Yu-Xian & Wang, Xiao-Dong & Cheng, Chin-Hsiang & Lin, David Ta-Wei, 2013. "Geometry optimization of thermoelectric coolers using simplified conjugate-gradient method," Energy, Elsevier, vol. 59(C), pages 689-697.
    5. Erturun, Ugur & Erermis, Kaan & Mossi, Karla, 2015. "Influence of leg sizing and spacing on power generation and thermal stresses of thermoelectric devices," Applied Energy, Elsevier, vol. 159(C), pages 19-27.
    6. Tingzhen Ming & Qiankun Wang & Keyuan Peng & Zhe Cai & Wei Yang & Yongjia Wu & Tingrui Gong, 2015. "The Influence of Non-Uniform High Heat Flux on Thermal Stress of Thermoelectric Power Generator," Energies, MDPI, vol. 8(11), pages 1-19, November.
    7. Lee, HoSung, 2013. "The Thomson effect and the ideal equation on thermoelectric coolers," Energy, Elsevier, vol. 56(C), pages 61-69.
    8. Soprani, S. & Haertel, J.H.K. & Lazarov, B.S. & Sigmund, O. & Engelbrecht, K., 2016. "A design approach for integrating thermoelectric devices using topology optimization," Applied Energy, Elsevier, vol. 176(C), pages 49-64.
    9. Fan, Shifa & Gao, Yuanwen, 2018. "Numerical simulation on thermoelectric and mechanical performance of annular thermoelectric generator," Energy, Elsevier, vol. 150(C), pages 38-48.
    10. Rama Venkatasubramanian & Edward Siivola & Thomas Colpitts & Brooks O'Quinn, 2001. "Thin-film thermoelectric devices with high room-temperature figures of merit," Nature, Nature, vol. 413(6856), pages 597-602, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Haowen & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli & Shen, Chao, 2023. "Investigation of the impact of the thermoelectric geometry on the cooling performance and thermal—mechanic characteristics in a thermoelectric cooler," Energy, Elsevier, vol. 267(C).
    2. Sun, Dongfang & Shen, Limei & Chen, Huanxin & Jiang, Bin & Jie, Desuan & Liu, Huanyu & Yao, Yu & Tang, Jingchun, 2020. "Modeling and analysis of the influence of Thomson effect on micro-thermoelectric coolers considering interfacial and size effects," Energy, Elsevier, vol. 196(C).
    3. Kashif Irshad & Abdulmohsen Almalawi & Asif Irshad Khan & Md Mottahir Alam & Md. Hasan Zahir & Amjad Ali, 2020. "An IoT-Based Thermoelectric Air Management Framework for Smart Building Applications: A Case Study for Tropical Climate," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    4. Liu, Haowen & Zhao, Xudong & Li, Guiqiang & Ma, Xiaoli, 2022. "Investigation of a novel separately-configured micro-thermoelectric cooler to enabling extend application scope," Applied Energy, Elsevier, vol. 306(PB).
    5. Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2020. "Review of thermoelectric geometry and structure optimization for performance enhancement," Applied Energy, Elsevier, vol. 268(C).
    6. Tian, Xiao-Xiao & Asaadi, Soheil & Moria, Hazim & Kaood, Amr & Pourhedayat, Samira & Jermsittiparsert, Kittisak, 2020. "Proposing tube-bundle arrangement of tubular thermoelectric module as a novel air cooler," Energy, Elsevier, vol. 208(C).
    7. Tianbo Lu & Yuqiang Li & Jianxin Zhang & Pingfan Ning & Pingjuan Niu, 2020. "Cooling and Mechanical Performance Analysis of a Trapezoidal Thermoelectric Cooler with Variable Cross-Section," Energies, MDPI, vol. 13(22), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2020. "Review of thermoelectric geometry and structure optimization for performance enhancement," Applied Energy, Elsevier, vol. 268(C).
    2. Zhao, Dongliang & Yin, Xiaobo & Xu, Jingtao & Tan, Gang & Yang, Ronggui, 2020. "Radiative sky cooling-assisted thermoelectric cooling system for building applications," Energy, Elsevier, vol. 190(C).
    3. Song, Kun & Yin, Deshun & Song, Haopeng & Schiavone, Peter & Wu, Xun & Yuan, Lili, 2022. "Seeking high energy conversion efficiency in a fully temperature-dependent thermoelectric medium," Energy, Elsevier, vol. 239(PE).
    4. Liu, Haowen & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli & Shen, Chao, 2023. "Investigation of the impact of the thermoelectric geometry on the cooling performance and thermal—mechanic characteristics in a thermoelectric cooler," Energy, Elsevier, vol. 267(C).
    5. Hadidi, Amin, 2017. "A novel approach for optimization of electrically serial two-stage thermoelectric refrigeration systems using chemical reaction optimization (CRO) algorithm," Energy, Elsevier, vol. 140(P1), pages 170-184.
    6. Shen, Zu-Guo & Liu, Xun & Chen, Shuai & Wu, Shuang-Ying & Xiao, Lan & Chen, Zu-Xiang, 2018. "Theoretical analysis on a segmented annular thermoelectric generator," Energy, Elsevier, vol. 157(C), pages 297-313.
    7. Sadighi Dizaji, Hamed & Jafarmadar, Samad & Khalilarya, Shahram & Moosavi, Amin, 2016. "An exhaustive experimental study of a novel air-water based thermoelectric cooling unit," Applied Energy, Elsevier, vol. 181(C), pages 357-366.
    8. Sun, Dongfang & Shen, Limei & Chen, Huanxin & Jiang, Bin & Jie, Desuan & Liu, Huanyu & Yao, Yu & Tang, Jingchun, 2020. "Modeling and analysis of the influence of Thomson effect on micro-thermoelectric coolers considering interfacial and size effects," Energy, Elsevier, vol. 196(C).
    9. Jia, Xiaodong & Guo, Qiuting, 2020. "Design study of Bismuth-Telluride-based thermoelectric generators based on thermoelectric and mechanical performance," Energy, Elsevier, vol. 190(C).
    10. Huang, Shouyuan & Xu, Xianfan, 2017. "A regenerative concept for thermoelectric power generation," Applied Energy, Elsevier, vol. 185(P1), pages 119-125.
    11. Luo, Ding & Wang, Ruochen & Yu, Wei & Zhou, Weiqi, 2020. "Parametric study of a thermoelectric module used for both power generation and cooling," Renewable Energy, Elsevier, vol. 154(C), pages 542-552.
    12. Owoyele, Opeoluwa & Ferguson, Scott & O’Connor, Brendan T., 2015. "Performance analysis of a thermoelectric cooler with a corrugated architecture," Applied Energy, Elsevier, vol. 147(C), pages 184-191.
    13. He, Wei & Zhang, Gan & Zhang, Xingxing & Ji, Jie & Li, Guiqiang & Zhao, Xudong, 2015. "Recent development and application of thermoelectric generator and cooler," Applied Energy, Elsevier, vol. 143(C), pages 1-25.
    14. Song Lv & Zuoqin Qian & Dengyun Hu & Xiaoyuan Li & Wei He, 2020. "A Comprehensive Review of Strategies and Approaches for Enhancing the Performance of Thermoelectric Module," Energies, MDPI, vol. 13(12), pages 1-24, June.
    15. Yin, Tao & He, Zhi-Zhu, 2021. "Analytical model-based optimization of the thermoelectric cooler with temperature-dependent materials under different operating conditions," Applied Energy, Elsevier, vol. 299(C).
    16. Liu, Di & Cai, Yang & Zhao, Fu-Yun, 2017. "Optimal design of thermoelectric cooling system integrated heat pipes for electric devices," Energy, Elsevier, vol. 128(C), pages 403-413.
    17. Pourhedayat, Samira, 2018. "Application of thermoelectric as an instant running-water cooler; experimental study under different operating conditions," Applied Energy, Elsevier, vol. 229(C), pages 364-374.
    18. Cui, Tengfei & Xuan, Yimin & Yin, Ershuai & Li, Qiang & Li, Dianhong, 2017. "Experimental investigation on potential of a concentrated photovoltaic-thermoelectric system with phase change materials," Energy, Elsevier, vol. 122(C), pages 94-102.
    19. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "Optimal design method for concentrating photovoltaic-thermoelectric hybrid system," Applied Energy, Elsevier, vol. 226(C), pages 320-329.
    20. Wang, Xue & Wang, Hongchao & Su, Wenbing & Chen, Tingting & Tan, Chang & Madre, María A. & Sotelo, Andres & Wang, Chunlei, 2022. "U-type unileg thermoelectric module: A novel structure for high-temperature application with long lifespan," Energy, Elsevier, vol. 238(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:172:y:2019:i:c:p:1211-1224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.