IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v147y2018icp950-964.html
   My bibliography  Save this article

Global strategic level supply planning of materials critical to clean energy technologies – A case study on indium

Author

Listed:
  • Choi, Chul Hun
  • Eun, Joonyup
  • Cao, Jinjian
  • Lee, Seokcheon
  • Zhao, Fu

Abstract

Many clean energy technologies depend on some rare materials, and significant concerns about the sufficient supply of these materials have been raised recently. Most of the rare materials are so called by-product materials, and thus their supplies heavily rely on the demand of base metals. This study develops a generic mixed integer linear programming to investigate global strategic level capacity and production planning for both base and by-product materials. Other decisions relevant to capacity expansions and productions are also considered. The model is demonstrated using indium as a case study. Indium is a key material needed by two emerging clean energy applications, copper indium gallium selenide photovoltaics and light-emitting diode lighting. Supply of indium exclusively depends on primary zinc production, and concerns have been raised on whether there will be sufficient supply to support widespread applications of these two technologies. Capacity expansions of indium refinery facilities can be the first solution to overcome its supply risk. All the decisions included in the model are numerically analyzed. Sensitivity of all the parameters to the total cost are also studied. Indium content in the ore, inflation rates, and discount rates are found to have significant impact on the total cost.

Suggested Citation

  • Choi, Chul Hun & Eun, Joonyup & Cao, Jinjian & Lee, Seokcheon & Zhao, Fu, 2018. "Global strategic level supply planning of materials critical to clean energy technologies – A case study on indium," Energy, Elsevier, vol. 147(C), pages 950-964.
  • Handle: RePEc:eee:energy:v:147:y:2018:i:c:p:950-964
    DOI: 10.1016/j.energy.2018.01.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218300811
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.01.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Verter, Vedat & Cemal Dincer, M., 1992. "An integrated evaluation of facility location, capacity acquisition, and technology selection for designing global manufacturing strategies," European Journal of Operational Research, Elsevier, vol. 60(1), pages 1-18, July.
    2. Susmita Dasgupta & Ashoka Mody & Subhendu Roy & David Wheeler, 2001. "Environmental Regulation and Development: A Cross-country Empirical Analysis," Oxford Development Studies, Taylor & Francis Journals, vol. 29(2), pages 173-187.
    3. Hoenderdaal, Sander & Tercero Espinoza, Luis & Marscheider-Weidemann, Frank & Graus, Wina, 2013. "Can a dysprosium shortage threaten green energy technologies?," Energy, Elsevier, vol. 49(C), pages 344-355.
    4. Leena Grandell & Mikael Höök, 2015. "Assessing Rare Metal Availability Challenges for Solar Energy Technologies," Sustainability, MDPI, vol. 7(9), pages 1-20, August.
    5. Sampath Rajagopalan & Jayashankar M. Swaminathan, 2001. "A Coordinated Production Planning Model with Capacity Expansion and Inventory Management," Management Science, INFORMS, vol. 47(11), pages 1562-1580, November.
    6. Hanan Luss, 1982. "Operations Research and Capacity Expansion Problems: A Survey," Operations Research, INFORMS, vol. 30(5), pages 907-947, October.
    7. Alexandra M. Newman & Enrique Rubio & Rodrigo Caro & Andrés Weintraub & Kelly Eurek, 2010. "A Review of Operations Research in Mine Planning," Interfaces, INFORMS, vol. 40(3), pages 222-245, June.
    8. Elshkaki, Ayman & Graedel, T.E., 2015. "Solar cell metals and their hosts: A tale of oversupply and undersupply," Applied Energy, Elsevier, vol. 158(C), pages 167-177.
    9. Bustamante, Michele L. & Gaustad, Gabrielle, 2014. "Challenges in assessment of clean energy supply-chains based on byproduct minerals: A case study of tellurium use in thin film photovoltaics," Applied Energy, Elsevier, vol. 123(C), pages 397-414.
    10. Achzet, Benjamin & Helbig, Christoph, 2013. "How to evaluate raw material supply risks—an overview," Resources Policy, Elsevier, vol. 38(4), pages 435-447.
    11. Uhlemair, Harald & Karschin, Ingo & Geldermann, Jutta, 2014. "Optimizing the production and distribution system of bioenergy villages," International Journal of Production Economics, Elsevier, vol. 147(PA), pages 62-72.
    12. Nassar, Nedal T. & Wilburn, David R. & Goonan, Thomas G., 2016. "Byproduct metal requirements for U.S. wind and solar photovoltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios," Applied Energy, Elsevier, vol. 183(C), pages 1209-1226.
    13. Bhutta, Khurrum S. & Huq, Faizul & Frazier, Greg & Mohamed, Zubair, 2003. "An integrated location, production, distribution and investment model for a multinational corporation," International Journal of Production Economics, Elsevier, vol. 86(3), pages 201-216, December.
    14. Martínez-Costa, Carme & Mas-Machuca, Marta & Benedito, Ernest & Corominas, Albert, 2014. "A review of mathematical programming models for strategic capacity planning in manufacturing," International Journal of Production Economics, Elsevier, vol. 153(C), pages 66-85.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shahana Althaf & Callie W. Babbitt & Roger Chen, 2021. "The evolution of consumer electronic waste in the United States," Journal of Industrial Ecology, Yale University, vol. 25(3), pages 693-706, June.
    2. Martin David & Florian Koch, 2019. "“Smart Is Not Smart Enough!” Anticipating Critical Raw Material Use in Smart City Concepts: The Example of Smart Grids," Sustainability, MDPI, vol. 11(16), pages 1-11, August.
    3. Chen, X.Y. & Chen, R.R. & Ding, X. & Fang, H.Z. & Li, X.Z. & Ding, H.S. & Su, Y.Q. & Guo, J.J. & Fu, H.Z., 2019. "Effect of phase formation on hydrogen storage properties in Ti-V-Mn alloys by zirconium substitution," Energy, Elsevier, vol. 166(C), pages 587-597.
    4. Jinjian Cao & Chul Hun Choi & Fu Zhao, 2021. "Agent-Based Modeling for By-Product Metal Supply—A Case Study on Indium," Sustainability, MDPI, vol. 13(14), pages 1-28, July.
    5. Choi, Chul Hun & Kim, Sang-Phil & Lee, Seokcheon & Zhao, Fu, 2020. "Game theoretic production decisions of by-product materials critical for clean energy technologies - Indium as a case study," Energy, Elsevier, vol. 203(C).
    6. Liu, Jingjing & Cheng, Honghui & Han, Shumin & Liu, Hongfei & Huot, Jacques, 2020. "Hydrogen storage properties and cycling degradation of single-phase La0.60R0.15Mg0·25Ni3.45 alloys with A2B7-type superlattice structure," Energy, Elsevier, vol. 192(C).
    7. He, Ruifang & Zhong, Meirui & Huang, Jianbai, 2021. "Technological progress and metal resource consumption in the electricity industry—A cross-country panel threshold data analysis," Energy, Elsevier, vol. 231(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helbig, Christoph & Bradshaw, Alex M. & Kolotzek, Christoph & Thorenz, Andrea & Tuma, Axel, 2016. "Supply risks associated with CdTe and CIGS thin-film photovoltaics," Applied Energy, Elsevier, vol. 178(C), pages 422-433.
    2. Martínez-Costa, Carme & Mas-Machuca, Marta & Benedito, Ernest & Corominas, Albert, 2014. "A review of mathematical programming models for strategic capacity planning in manufacturing," International Journal of Production Economics, Elsevier, vol. 153(C), pages 66-85.
    3. Nassar, Nedal T. & Wilburn, David R. & Goonan, Thomas G., 2016. "Byproduct metal requirements for U.S. wind and solar photovoltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios," Applied Energy, Elsevier, vol. 183(C), pages 1209-1226.
    4. Hahn, G.J. & Kuhn, H., 2012. "Simultaneous investment, operations, and financial planning in supply chains: A value-based optimization approach," International Journal of Production Economics, Elsevier, vol. 140(2), pages 559-569.
    5. Junne, Tobias & Wulff, Niklas & Breyer, Christian & Naegler, Tobias, 2020. "Critical materials in global low-carbon energy scenarios: The case for neodymium, dysprosium, lithium, and cobalt," Energy, Elsevier, vol. 211(C).
    6. Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    7. Song, Huiling & Wang, Chang & Sun, Kun & Geng, Hongjun & Zuo, Lyushui, 2023. "Material efficiency strategies across the industrial chain to secure indium availability for global carbon neutrality," Resources Policy, Elsevier, vol. 85(PB).
    8. Jans, R.F. & Degraeve, Z., 2005. "Modeling Industrial Lot Sizing Problems: A Review," ERIM Report Series Research in Management ERS-2005-049-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    9. Wang, Peng & Chen, Li-Yang & Ge, Jian-Ping & Cai, Wenjia & Chen, Wei-Qiang, 2019. "Incorporating critical material cycles into metal-energy nexus of China’s 2050 renewable transition," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Jodlbauer, Herbert & Altendorfer, Klaus, 2010. "Trade-off between capacity invested and inventory needed," European Journal of Operational Research, Elsevier, vol. 203(1), pages 118-133, May.
    11. Sabet, Ehsan & Yazdani, Baback & Kian, Ramez & Galanakis, Kostas, 2020. "A strategic and global manufacturing capacity management optimisation model: A Scenario-based multi-stage stochastic programming approach," Omega, Elsevier, vol. 93(C).
    12. Hongmin Li & Stephen C. Graves & Woonghee Tim Huh, 2014. "Optimal Capacity Conversion for Product Transitions Under High Service Requirements," Manufacturing & Service Operations Management, INFORMS, vol. 16(1), pages 46-60, February.
    13. André Månberger, 2021. "Reduced Use of Fossil Fuels can Reduce Supply of Critical Resources," Biophysical Economics and Resource Quality, Springer, vol. 6(2), pages 1-15, June.
    14. Zhou, Mei-Jing & Huang, Jian-Bai & Chen, Jin-Yu, 2022. "Time and frequency spillovers between political risk and the stock returns of China's rare earths," Resources Policy, Elsevier, vol. 75(C).
    15. Lijian Lu & Xiaoming Yan, 2016. "Capacity investment decisions under risk aversion," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(3), pages 218-235, April.
    16. Xiuli Chao & Hong Chen & Shaohui Zheng, 2009. "Dynamic Capacity Expansion for a Service Firm with Capacity Deterioration and Supply Uncertainty," Operations Research, INFORMS, vol. 57(1), pages 82-93, February.
    17. Jan A. Van Mieghem, 2003. "Commissioned Paper: Capacity Management, Investment, and Hedging: Review and Recent Developments," Manufacturing & Service Operations Management, INFORMS, vol. 5(4), pages 269-302, July.
    18. Vedat Verter & M. Cemal Dincer, 1995. "Facility location and capacity acquisition: An integrated approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(8), pages 1141-1160, December.
    19. Lee, Chia-Yen & Charles, Vincent, 2022. "A robust capacity expansion integrating the perspectives of marginal productivity and capacity regret," European Journal of Operational Research, Elsevier, vol. 296(2), pages 557-569.
    20. Zhang, Kuangyuan & Kleit, Andrew N. & Nieto, Antonio, 2017. "An economics strategy for criticality – Application to rare earth element Yttrium in new lighting technology and its sustainable availability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 899-915.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:147:y:2018:i:c:p:950-964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.