IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v192y2020ics0360544219323126.html
   My bibliography  Save this article

Hydrogen storage properties and cycling degradation of single-phase La0.60R0.15Mg0·25Ni3.45 alloys with A2B7-type superlattice structure

Author

Listed:
  • Liu, Jingjing
  • Cheng, Honghui
  • Han, Shumin
  • Liu, Hongfei
  • Huot, Jacques

Abstract

Single-phase La–Mg–Ni-based alloys show promising hydrogen storage performance. In this paper, we report the gaseous hydrogen storage characteristics, especially cycling performance of a series of A2B7-type single-phase La0.60R0.15Mg0·25Ni3.45 (R = Pr, Nd and Gd) alloys. These alloys are composed of [AB5] and [A2B4] subunits stacking along c-axis in the ratio of 2:1. With cycling, degradation occurs which results in a sloped and increased plateau pressure, larger hysteresis and decreased hydrogen storage capacity. Structurally, the degradation is caused by the alloys’ lattice expansion/contraction which leads to significant microstrain and decrease in grain size. It is found that the alloy with R = Gd experiences minimal microstrain and preserves good crystallinity during hydrogen absorption/desorption owing to its almost equal [A2B4] and [AB5] subunit volumes. The R = Gd alloy achieved a cycling retention of 89.5% after 100 cycles compared with 79.8%–81.8% for the other two alloys. Additionally, the R = Gd alloy also possesses high reversibility, flat plateau and small hysteresis, showing a great potential in the hydrogen storage applications.

Suggested Citation

  • Liu, Jingjing & Cheng, Honghui & Han, Shumin & Liu, Hongfei & Huot, Jacques, 2020. "Hydrogen storage properties and cycling degradation of single-phase La0.60R0.15Mg0·25Ni3.45 alloys with A2B7-type superlattice structure," Energy, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:energy:v:192:y:2020:i:c:s0360544219323126
    DOI: 10.1016/j.energy.2019.116617
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219323126
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116617?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lv, Peng & Huot, Jacques, 2017. "Hydrogenation improvement of TiFe by adding ZrMn2," Energy, Elsevier, vol. 138(C), pages 375-382.
    2. Choi, Chul Hun & Eun, Joonyup & Cao, Jinjian & Lee, Seokcheon & Zhao, Fu, 2018. "Global strategic level supply planning of materials critical to clean energy technologies – A case study on indium," Energy, Elsevier, vol. 147(C), pages 950-964.
    3. Chen, X.Y. & Chen, R.R. & Ding, X. & Fang, H.Z. & Li, X.Z. & Ding, H.S. & Su, Y.Q. & Guo, J.J. & Fu, H.Z., 2019. "Effect of phase formation on hydrogen storage properties in Ti-V-Mn alloys by zirconium substitution," Energy, Elsevier, vol. 166(C), pages 587-597.
    4. Ensafi, Ali A. & Jafari-Asl, Mehdi & Nabiyan, Afshin & Rezaei, Behzad & Dinari, Mohammad, 2016. "Hydrogen storage in hybrid of layered double hydroxides/reduced graphene oxide using spillover mechanism," Energy, Elsevier, vol. 99(C), pages 103-114.
    5. Yang, Tai & Wang, Peng & Li, Qiang & Xia, Chaoqun & Yin, Fuxing & Liang, Chunyong & Zhang, Yanghuan, 2018. "Hydrogen absorption and desorption behavior of Ni catalyzed Mg–Y–C–Ni nanocomposites," Energy, Elsevier, vol. 165(PA), pages 709-719.
    6. Wilberforce, Tabbi & El Hassan, Zaki & Durrant, A. & Thompson, J. & Soudan, Bassel & Olabi, A.G., 2019. "Overview of ocean power technology," Energy, Elsevier, vol. 175(C), pages 165-181.
    7. Zhang, Yunlong & Li, Jinshan & Zhang, Tiebang & Kou, Hongchao & Hu, Rui & Xue, Xiangyi, 2016. "Hydrogen storage properties of non-stoichiometric Zr0.9TixV2 melt-spun ribbons," Energy, Elsevier, vol. 114(C), pages 1147-1154.
    8. Kumar, Sanjay & Tiwari, G.P. & Sonak, Sagar & Jain, Uttam & Krishnamurthy, Nagaiyar, 2014. "High performance FeTi – 3.1 mass % V alloy for on board hydrogen storage solution," Energy, Elsevier, vol. 75(C), pages 520-524.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, XiuBo & Hou, Chuanxin & Chen, Chunguang & Sun, Xueqin & Pang, Yu & Zhang, Yuping & Yu, Ronghai & Wang, Bing & Du, Wei, 2020. "First-principles studies in Mg-based hydrogen storage Materials: A review," Energy, Elsevier, vol. 211(C).
    2. Zhang, J. & Yao, Y. & He, L. & Zhou, X.J. & Yu, L.P. & Lu, X.Z. & Peng, P., 2021. "Hydrogen storage properties and mechanisms of as-cast, homogenized and ECAP processed Mg98.5Y1Zn0.5 alloys containing LPSO phase," Energy, Elsevier, vol. 217(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, X.Y. & Chen, R.R. & Ding, X. & Fang, H.Z. & Li, X.Z. & Ding, H.S. & Su, Y.Q. & Guo, J.J. & Fu, H.Z., 2019. "Effect of phase formation on hydrogen storage properties in Ti-V-Mn alloys by zirconium substitution," Energy, Elsevier, vol. 166(C), pages 587-597.
    2. Wang, Feng & Li, Rongfeng & Ding, Cuiping & Tang, Wukui & Wang, Yibo & Xu, Shimeng & Yu, Ronghai & Wang, Zhongmin, 2017. "Enhanced hydrogen storage properties of ZrCo alloy decorated with flower-like Pd particles," Energy, Elsevier, vol. 139(C), pages 8-17.
    3. Wang, Yanhong & Yin, Kaidong & Fan, Shuanshi & Lang, Xuemei & Yu, Chi & Wang, Shenglong & Li, Song, 2021. "The molecular insight into the “Zeolite-ice” as hydrogen storage material," Energy, Elsevier, vol. 217(C).
    4. Zhang, J. & Yao, Y. & He, L. & Zhou, X.J. & Yu, L.P. & Lu, X.Z. & Peng, P., 2021. "Hydrogen storage properties and mechanisms of as-cast, homogenized and ECAP processed Mg98.5Y1Zn0.5 alloys containing LPSO phase," Energy, Elsevier, vol. 217(C).
    5. Cala, Anggie & Maturana-Córdoba, Aymer & Soto-Verjel, Joseph, 2023. "Exploring the pretreatments' influence on pressure reverse osmosis: PRISMA review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    6. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    7. Soudan, Bassel, 2019. "Community-scale baseload generation from marine energy," Energy, Elsevier, vol. 189(C).
    8. Tokimatsu, Koji & Höök, Mikael & McLellan, Benjamin & Wachtmeister, Henrik & Murakami, Shinsuke & Yasuoka, Rieko & Nishio, Masahiro, 2018. "Energy modeling approach to the global energy-mineral nexus: Exploring metal requirements and the well-below 2 °C target with 100 percent renewable energy," Applied Energy, Elsevier, vol. 225(C), pages 1158-1175.
    9. Sayed, Enas Taha & Abdelkareem, Mohammad Ali & Alawadhi, Hussain & Elsaid, Khaled & Wilberforce, Tabbi & Olabi, A.G., 2021. "Graphitic carbon nitride/carbon brush composite as a novel anode for yeast-based microbial fuel cells," Energy, Elsevier, vol. 221(C).
    10. Armenia Androniceanu & Oana Matilda Sabie, 2022. "Overview of Green Energy as a Real Strategic Option for Sustainable Development," Energies, MDPI, vol. 15(22), pages 1-35, November.
    11. Liu, Xiaodong & Feng, Bo & Liu, Di & Wang, Yiming & Zhao, Haitao & Si, Yulin & Zhang, Dahai & Qian, Peng, 2022. "Study on two-rotor interaction of counter-rotating horizontal axis tidal turbine," Energy, Elsevier, vol. 241(C).
    12. Sanjay Kumar Kar & Akhoury Sudhir Kumar Sinha & Sidhartha Harichandan & Rohit Bansal & Marriyappan Sivagnanam Balathanigaimani, 2023. "Hydrogen economy in India: A status review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(1), January.
    13. Lamiel, Charmaine & Nguyen, Van Hoa & Hussain, Iftikhar & Shim, Jae-Jin, 2017. "Enhancement of electrochemical performance of nickel cobalt layered double hydroxide@nickel foam with potassium ferricyanide auxiliary electrolyte," Energy, Elsevier, vol. 140(P1), pages 901-911.
    14. Li, Zhongjie & Jiang, Xiaomeng & Yin, Peilun & Tang, Lihua & Wu, Hao & Peng, Yan & Luo, Jun & Xie, Shaorong & Pu, Huayan & Wang, Daifeng, 2021. "Towards self-powered technique in underwater robots via a high-efficiency electromagnetic transducer with circularly abrupt magnetic flux density change," Applied Energy, Elsevier, vol. 302(C).
    15. Ma, Li-Juan & Wang, Jianfeng & Han, Min & Jia, Jianfeng & Wu, Hai-Shun & Zhang, Xiang, 2019. "Adsorption of multiple H2 molecules on the complex TiC6H6: An unusual combination of chemisorption and physisorption," Energy, Elsevier, vol. 171(C), pages 315-325.
    16. Monama, Gobeng R. & Mdluli, Siyabonga B. & Mashao, Gloria & Makhafola, Mogwasha D. & Ramohlola, Kabelo E. & Molapo, Kerileng M. & Hato, Mpitloane J. & Makgopa, Katlego & Iwuoha, Emmanuel I. & Modibane, 2018. "Palladium deposition on copper(II) phthalocyanine/metal organic framework composite and electrocatalytic activity of the modified electrode towards the hydrogen evolution reaction," Renewable Energy, Elsevier, vol. 119(C), pages 62-72.
    17. Roger Samsó & Júlia Crespin & Antonio García-Olivares & Jordi Solé, 2023. "Examining the Potential of Marine Renewable Energy: A Net Energy Perspective," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
    18. Zielinski, Michał & Myszkowski, Adam & Pelic, Marcin & Staniek, Roman, 2022. "Low-speed radial piston pump as an effective alternative power transmission for small hydropower plants," Renewable Energy, Elsevier, vol. 182(C), pages 1012-1027.
    19. Si, Yulin & Liu, Xiaodong & Wang, Tao & Feng, Bo & Qian, Peng & Ma, Yong & Zhang, Dahai, 2022. "State-of-the-art review and future trends of development of tidal current energy converters in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    20. Kumar, Sandeep & Dhilip Kumar, T.J., 2020. "Hydrogen trapping potential of Ca decorated metal-graphyne framework," Energy, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:192:y:2020:i:c:s0360544219323126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.