IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v243y2022ics036054422103019x.html
   My bibliography  Save this article

Utilization of on-grid photovoltaic panels to offset electricity consumption of a residential ground source heat pump

Author

Listed:
  • Biglarian, Hassan
  • Abdollahi, Sina

Abstract

Ground source heat pump (GSHP) system is an efficient solution to mitigate energy consumption and environmental emissions in the building sector. Although the GSHP system is categorized among renewable energy technologies, considering the fact that the system's power demand is usually provided by fossil fuel resources, it may not fully meet this classification. One way to offset the GSHP's electricity consumption in a renewable approach is the use of photovoltaic (PV) panels. This paper aims to study the feasibility of a hybrid PV-GSHP system for a residential building in Tehran, Iran. To that end, a numerical model is developed to explore the GSHP system's performance over a 20-year design life, taking several borehole lengths into account. Moreover, the PV modules are simulated by EnergyPlus software. A life cycle cost analysis is also performed to assess the economic viability and optimal design of the PV-GSHP system. The results illustrate that using four PV modules can best cover the system's electricity consumption and the discounted payback period is less than four years. Furthermore, an environmental evaluation reveals that the PV-GSHP system can save 29.2 t of carbon dioxide emissions over the 20-year period compared to the GSHP system.

Suggested Citation

  • Biglarian, Hassan & Abdollahi, Sina, 2022. "Utilization of on-grid photovoltaic panels to offset electricity consumption of a residential ground source heat pump," Energy, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:energy:v:243:y:2022:i:c:s036054422103019x
    DOI: 10.1016/j.energy.2021.122770
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422103019X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122770?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bakirci, Kadir & Ozyurt, Omer & Comakli, Kemal & Comakli, Omer, 2011. "Energy analysis of a solar-ground source heat pump system with vertical closed-loop for heating applications," Energy, Elsevier, vol. 36(5), pages 3224-3232.
    2. Kjellsson, Elisabeth & Hellström, Göran & Perers, Bengt, 2010. "Optimization of systems with the combination of ground-source heat pump and solar collectors in dwellings," Energy, Elsevier, vol. 35(6), pages 2667-2673.
    3. Chen, Xi & Yang, Hongxing, 2012. "Performance analysis of a proposed solar assisted ground coupled heat pump system," Applied Energy, Elsevier, vol. 97(C), pages 888-896.
    4. Biglarian, Hassan & Abbaspour, Madjid & Saidi, Mohammad Hassan, 2017. "A numerical model for transient simulation of borehole heat exchangers," Renewable Energy, Elsevier, vol. 104(C), pages 224-237.
    5. Biglarian, Hassan & Abbaspour, Madjid & Saidi, Mohammad Hassan, 2018. "Evaluation of a transient borehole heat exchanger model in dynamic simulation of a ground source heat pump system," Energy, Elsevier, vol. 147(C), pages 81-93.
    6. Nazari, S. & Shahhoseini, O. & Sohrabi-Kashani, A. & Davari, S. & Paydar, R. & Delavar-Moghadam, Z., 2010. "Experimental determination and analysis of CO2, SO2 and NOx emission factors in Iran’s thermal power plants," Energy, Elsevier, vol. 35(7), pages 2992-2998.
    7. Thygesen, Richard & Karlsson, Björn, 2016. "Simulation of a proposed novel weather forecast control for ground source heat pumps as a mean to evaluate the feasibility of forecast controls’ influence on the photovoltaic electricity self-consumpt," Applied Energy, Elsevier, vol. 164(C), pages 579-589.
    8. Franco, Alessandro & Fantozzi, Fabio, 2016. "Experimental analysis of a self consumption strategy for residential building: The integration of PV system and geothermal heat pump," Renewable Energy, Elsevier, vol. 86(C), pages 1075-1085.
    9. Xia, Lei & Ma, Zhenjun & Kokogiannakis, Georgios & Wang, Shugang & Gong, Xuemei, 2018. "A model-based optimal control strategy for ground source heat pump systems with integrated solar photovoltaic thermal collectors," Applied Energy, Elsevier, vol. 228(C), pages 1399-1412.
    10. Gunawan, Evelyn & Giordano, Nicolò & Jensson, Páll & Newson, Juliet & Raymond, Jasmin, 2020. "Alternative heating systems for northern remote communities: Techno-economic analysis of ground-coupled heat pumps in Kuujjuaq, Nunavik, Canada," Renewable Energy, Elsevier, vol. 147(P1), pages 1540-1553.
    11. Roselli, C. & Diglio, G. & Sasso, M. & Tariello, F., 2019. "A novel energy index to assess the impact of a solar PV-based ground source heat pump on the power grid," Renewable Energy, Elsevier, vol. 143(C), pages 488-500.
    12. Xia, Lei & Ma, Zhenjun & Kokogiannakis, Georgios & Wang, Zhihua & Wang, Shugang, 2018. "A model-based design optimization strategy for ground source heat pump systems with integrated photovoltaic thermal collectors," Applied Energy, Elsevier, vol. 214(C), pages 178-190.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Libing & Entchev, Evgueniy & Ghorab, Mohamed & Lee, Euy-Joon & Kang, Eun-Chul & Kim, Yu-Jin & Nam, Yujin & Bae, Sangmu & Kim, Kwonye, 2022. "Advanced smart trigeneration energy system design for commercial building applications – Energy and cost performance analyses," Energy, Elsevier, vol. 259(C).
    2. Josué F. Rosales-Pérez & Andrés Villarruel-Jaramillo & José A. Romero-Ramos & Manuel Pérez-García & José M. Cardemil & Rodrigo Escobar, 2023. "Hybrid System of Photovoltaic and Solar Thermal Technologies for Industrial Process Heat," Energies, MDPI, vol. 16(5), pages 1-45, February.
    3. Zhao, Anjun & Jiao, Yang & Quan, Wei & Chen, Yiren, 2024. "Net zero carbon rural integrated energy system design optimization based on the energy demand in temporal and spatial dimensions," Renewable Energy, Elsevier, vol. 222(C).
    4. Zhang, Xiaofeng & Su, Junjie & Jiao, Fan & Zeng, Rong & Pan, Jinjun & He, Xu & Deng, Qiaolin & Li, Hongqiang, 2024. "Performance investigation and operation optimization of an innovative hybrid renewable energy integration system for commercial building complex and hydrogen vehicles," Energy, Elsevier, vol. 301(C).
    5. Ciprian Cristea & Maria Cristea & Dan Doru Micu & Andrei Ceclan & Radu-Adrian Tîrnovan & Florica Mioara Șerban, 2022. "Tridimensional Sustainability and Feasibility Assessment of Grid-Connected Solar Photovoltaic Systems Applied for the Technical University of Cluj-Napoca," Sustainability, MDPI, vol. 14(17), pages 1-23, August.
    6. Boahen, Samuel & Anka, Selorm Kwaku & Ohm, Tae In & Cho, Yong & Choi, Jong Woong & Kim, Han-Young & Choi, Jong Min, 2023. "Capacity control of a cascade multi-purpose heat pump using variable speed compressor," Renewable Energy, Elsevier, vol. 205(C), pages 945-955.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naili, Nabiha & Kooli, Sami, 2021. "Solar-assisted ground source heat pump system operated in heating mode: A case study in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Roselli, C. & Diglio, G. & Sasso, M. & Tariello, F., 2019. "A novel energy index to assess the impact of a solar PV-based ground source heat pump on the power grid," Renewable Energy, Elsevier, vol. 143(C), pages 488-500.
    3. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part-B: Applications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 124-155.
    4. Elisa Marrasso & Carlo Roselli & Francesco Tariello, 2020. "Comparison of Two Solar PV-Driven Air Conditioning Systems with Different Tracking Modes," Energies, MDPI, vol. 13(14), pages 1-24, July.
    5. Yang, Weibo & Zhang, Heng & Liang, Xingfu, 2018. "Experimental performance evaluation and parametric study of a solar-ground source heat pump system operated in heating modes," Energy, Elsevier, vol. 149(C), pages 173-189.
    6. Allouhi, Amine, 2022. "Techno-economic and environmental accounting analyses of an innovative power-to-heat concept based on solar PV systems and a geothermal heat pump," Renewable Energy, Elsevier, vol. 191(C), pages 649-661.
    7. You, Tian & Wu, Wei & Yang, Hongxing & Liu, Jiankun & Li, Xianting, 2021. "Hybrid photovoltaic/thermal and ground source heat pump: Review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    8. Qiu, Guodong & Li, Kuangfu & Cai, Weihua & Yu, Shipeng, 2023. "Optimization of an integrated system including a photovoltaic/thermal system and a ground source heat pump system for building energy supply in cold areas," Applied Energy, Elsevier, vol. 349(C).
    9. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2014. "A study on energy and CO2 saving potential of ground source heat pump system in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 278-293.
    10. Hongkyo Kim & Yujin Nam & Sangmu Bae & Soolyeon Cho, 2020. "Study on the Performance of Multiple Sources and Multiple Uses Heat Pump System in Three Different Cities," Energies, MDPI, vol. 13(19), pages 1-17, October.
    11. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
    12. Shah, Sheikh Khaleduzzaman & Aye, Lu & Rismanchi, Behzad, 2018. "Seasonal thermal energy storage system for cold climate zones: A review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 38-49.
    13. Wu, Wei & Li, Xianting & You, Tian & Wang, Baolong & Shi, Wenxing, 2015. "Combining ground source absorption heat pump with ground source electrical heat pump for thermal balance, higher efficiency and better economy in cold regions," Renewable Energy, Elsevier, vol. 84(C), pages 74-88.
    14. Pan, Aiqiang & McCartney, John S. & Lu, Lin & You, Tian, 2020. "A novel analytical multilayer cylindrical heat source model for vertical ground heat exchangers installed in layered ground," Energy, Elsevier, vol. 200(C).
    15. Davide Menegazzo & Giulia Lombardo & Sergio Bobbo & Michele De Carli & Laura Fedele, 2022. "State of the Art, Perspective and Obstacles of Ground-Source Heat Pump Technology in the European Building Sector: A Review," Energies, MDPI, vol. 15(7), pages 1-25, April.
    16. Maria Manzoor & Usman Rauf Kamboh & Sumaira Gulshan & Sven Tomforde & Iram Gul & Alighazi Siddiqui & Muhammad Arshad, 2023. "Optimizing Sustainable Phytoextraction of Lead from Contaminated Soil Using Response Surface Methodology (RSM) and Artificial Neural Network (ANN)," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    17. Ma, Hongting & Li, Cong & Lu, Wenqian & Zhang, Zeyu & Yu, Shaojie & Du, Na, 2017. "Investigation on a solar-groundwater heat pump unit associated with radiant floor heating," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 972-977.
    18. Xi, Chen & Hongxing, Yang & Lin, Lu & Jinggang, Wang & Wei, Liu, 2011. "Experimental studies on a ground coupled heat pump with solar thermal collectors for space heating," Energy, Elsevier, vol. 36(8), pages 5292-5300.
    19. Liu, Zhijian & Li, Yuanwei & Xu, Wei & Yin, Hang & Gao, Jun & Jin, Guangya & Lun, Liyong & Jin, Guohui, 2019. "Performance and feasibility study of hybrid ground source heat pump system assisted with cooling tower for one office building based on one Shanghai case," Energy, Elsevier, vol. 173(C), pages 28-37.
    20. Kavian, Soheil & Aghanajafi, Cyrus & Jafari Mosleh, Hassan & Nazari, Arash & Nazari, Ashkan, 2020. "Exergy, economic and environmental evaluation of an optimized hybrid photovoltaic-geothermal heat pump system," Applied Energy, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:243:y:2022:i:c:s036054422103019x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.