IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v58y2013icp283-295.html
   My bibliography  Save this article

Non-isothermal modeling of a small passive direct methanol fuel cell in vertical operation with anode natural convection effect

Author

Listed:
  • Wang, Luwen
  • Zhang, Yufeng
  • An, Zijian
  • Huang, Siteng
  • Zhou, Zhiping
  • Liu, Xiaowei

Abstract

A two-dimensional, non-isothermal model is presented for a small passive direct methanol fuel cell (DMFC) in vertical operation. The effect of natural convection at the anode in the fuel reservoir is considered. The coupled heat and mass transport of the whole cell, along with the electrochemical reactions occurring in the passive DMFC are modeled. The comprehensive model is solved numerically by the finite element method and validated against the experiment results reported in this paper. The numerical results show that when in vertical operation, the cell temperature increases gradually from the bottom of the cell to the top of the cell, resulting from natural convection at the anode. A higher cell temperature will lead to stronger natural convection in the fuel reservoir, which will in turn lead to a larger temperature difference across the cell. The results also indicate that the rate of methanol crossover increases with increasing methanol concentration from 1 M to 4 M. When incrementally increasing the current densities, the rate of methanol crossover decreased at low methanol concentration of 1 M–2 M but increased at high methanol concentration of 3 M–4 M.

Suggested Citation

  • Wang, Luwen & Zhang, Yufeng & An, Zijian & Huang, Siteng & Zhou, Zhiping & Liu, Xiaowei, 2013. "Non-isothermal modeling of a small passive direct methanol fuel cell in vertical operation with anode natural convection effect," Energy, Elsevier, vol. 58(C), pages 283-295.
  • Handle: RePEc:eee:energy:v:58:y:2013:i:c:p:283-295
    DOI: 10.1016/j.energy.2013.06.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213005227
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.06.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang, Shuo & Song, Nan & Liu, Yuntao & Zhao, Chunhui & Wang, Ying, 2024. "Comprehensive energy conversion efficiency analysis of micro direct methanol fuel cell stack based on polarization theory," Energy, Elsevier, vol. 287(C).
    2. Alipour Najmi, Ali & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Investigation of NaOH concentration effect in injected fuel on the performance of passive direct methanol alkaline fuel cell with modified cation exchange membrane," Energy, Elsevier, vol. 94(C), pages 589-599.
    3. Fang, Shuo & Zhang, Yufeng & Ma, Zezhong & Zou, Yuezhang & Liu, Xiaowei, 2016. "Development of a micro direct methanol fuel cell with heat control," Energy, Elsevier, vol. 116(P1), pages 978-985.
    4. Prapainainar, Paweena & Du, Zehui & Theampetch, Apichaya & Prapainainar, Chaiwat & Kongkachuichay, Paisan & Holmes, Stuart M., 2020. "Properties and DMFC performance of nafion/mordenite composite membrane fabricated by solution-casting method with different solvent ratio," Energy, Elsevier, vol. 190(C).
    5. Yuan, Zhenyu & Zhang, Manna & Zuo, Kaiyuan & Ren, Yongqiang, 2018. "The effect of gravity on inner transport and cell performance in passive micro direct methanol fuel cell," Energy, Elsevier, vol. 150(C), pages 28-37.
    6. Fang, Shuo & Song, Nan & Liu, Yuntao & Zhou, Chaoyang & Zhao, Chunhui & Wang, Yun, 2023. "Oscillator design for high efficiency DC-DC of micro direct methanol fuel cell," Energy, Elsevier, vol. 284(C).
    7. Wang, Luwen & He, Mingyan & Hu, Yue & Zhang, Yufeng & Liu, Xiaowei & Wang, Gaofeng, 2015. "A “4-cell” modular passive DMFC (direct methanol fuel cell) stack for portable applications," Energy, Elsevier, vol. 82(C), pages 229-235.
    8. Xue, Yan Qing & Guo, Hang & Shang, Hui Hui & Ye, Fang & Ma, Chong Fang, 2015. "Simulation of mass transfer in a passive direct methanol fuel cell cathode with perforated current collector," Energy, Elsevier, vol. 81(C), pages 501-510.
    9. Fang, Shuo & Zhang, Yufeng & Zou, Yuezhang & Sang, Shengtian & Liu, Xiaowei, 2017. "Structural design and analysis of a passive DMFC supplied with concentrated methanol solution," Energy, Elsevier, vol. 128(C), pages 50-61.
    10. Wang, Luwen & Yuan, Zhaoxia & Wen, Fei & Cheng, Yuhua & Zhang, Yufeng & Wang, Gaofeng, 2018. "A bipolar passive DMFC stack for portable applications," Energy, Elsevier, vol. 144(C), pages 587-593.
    11. Maria H. de Sá & Alexandra M. F. R. Pinto & Vânia B. Oliveira, 2022. "Passive Small Direct Alcohol Fuel Cells for Low-Power Portable Applications: Assessment Based on Innovative Increments since 2018," Energies, MDPI, vol. 15(10), pages 1-48, May.
    12. Munjewar, Seema S. & Thombre, Shashikant B. & Mallick, Ranjan K., 2017. "Approaches to overcome the barrier issues of passive direct methanol fuel cell – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1087-1104.
    13. Fang, Shuo & Zhang, Yufeng & Ma, Zezhong & Sang, Shengtian & Liu, Xiaowei, 2016. "Systemic modeling and analysis of DMFC stack for behavior prediction in system-level application," Energy, Elsevier, vol. 112(C), pages 1015-1023.
    14. Fang, Shuo & Liu, Yuntao & Zhao, Chunhui & Huang, Lilian & Zhong, Zhi & Wang, Yun, 2021. "Polarization analysis of a micro direct methanol fuel cell stack based on Debye-Hückel ionic atmosphere theory," Energy, Elsevier, vol. 222(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:58:y:2013:i:c:p:283-295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.