IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipas0360544221019587.html
   My bibliography  Save this article

Adaptive control strategy for power output stability in long-time operation of fuel cells

Author

Listed:
  • Yang, Qinwen
  • Gao, Bin
  • Cheng, Qiang
  • Xiao, Gang
  • Meng, Min

Abstract

An adaptive control strategy is developed for active degradation compensation of fuel cells, so as to improve output performance stability during long-time operation. Two groups of long-time tests of DMFC under different operating parameters are designed and implemented. The parameter adjustment significance that defines the adjusting priority is obtained from experimental analyses, based on which, the adaptive control strategy is developed and systematically tested. The results show that temporary degradation and permanent degradation for fuel cell performance could be differentiated in the process of performance degradation and recovery. The operation condition which would bring a higher energy conversion efficiency may lead to more serious degradations. The developed control strategy could help to adaptively alleviate fuel cell degradation during long-time operation. The temporary degradation and permanent degradation rates both decreased in daily operation, and the errors between output voltage and objective values are controlled within 2 %. The study provides an effective reference for improving the fuel cell stability during long-time operation and prolonging its service life.

Suggested Citation

  • Yang, Qinwen & Gao, Bin & Cheng, Qiang & Xiao, Gang & Meng, Min, 2022. "Adaptive control strategy for power output stability in long-time operation of fuel cells," Energy, Elsevier, vol. 238(PA).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221019587
    DOI: 10.1016/j.energy.2021.121710
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221019587
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121710?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yeh, Pulin & Chang, Chu Hsiang & Shih, Naichien & Yeh, Naichia, 2016. "Durability and efficiency tests for direct methanol fuel cell's long-term performance assessment," Energy, Elsevier, vol. 107(C), pages 716-724.
    2. Liu, Guicheng & Li, Xinyang & Wang, Hui & Liu, Xiuying & Chen, Ming & Woo, Jae Young & Kim, Ji Young & Wang, Xindong & Lee, Joong Kee, 2017. "Design of 3-electrode system for in situ monitoring direct methanol fuel cells during long-time running test at high temperature," Applied Energy, Elsevier, vol. 197(C), pages 163-168.
    3. Yang, Qinwen & Xiao, Gang & Li, Lexi & Che, Mengjie & Hu, Xu-Qu & Meng, Min, 2021. "Collaborative design of multi-type parameters for design and operational stage matching in fuel cells," Renewable Energy, Elsevier, vol. 175(C), pages 1101-1110.
    4. Liu, Yonggang & Liu, Junjun & Zhang, Yuanjian & Wu, Yitao & Chen, Zheng & Ye, Ming, 2020. "Rule learning based energy management strategy of fuel cell hybrid vehicles considering multi-objective optimization," Energy, Elsevier, vol. 207(C).
    5. Wang, Luwen & Yuan, Zhaoxia & Wen, Fei & Cheng, Yuhua & Zhang, Yufeng & Wang, Gaofeng, 2018. "A bipolar passive DMFC stack for portable applications," Energy, Elsevier, vol. 144(C), pages 587-593.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Fengxiang & Chi, Xuncheng & Wei, Wei & Mo, Tiande & Li, Yu, 2023. "Model-based observer for direct methanol fuel cell concentration estimation by using second-order sliding-mode algorithm," Energy, Elsevier, vol. 263(PD).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Shuo & Song, Nan & Liu, Yuntao & Zhao, Chunhui & Wang, Ying, 2024. "Comprehensive energy conversion efficiency analysis of micro direct methanol fuel cell stack based on polarization theory," Energy, Elsevier, vol. 287(C).
    2. Fang, Shuo & Song, Nan & Liu, Yuntao & Zhou, Chaoyang & Zhao, Chunhui & Wang, Yun, 2023. "Oscillator design for high efficiency DC-DC of micro direct methanol fuel cell," Energy, Elsevier, vol. 284(C).
    3. Du, Jiuyu & Ouyang, Danhua, 2017. "Progress of Chinese electric vehicles industrialization in 2015: A review," Applied Energy, Elsevier, vol. 188(C), pages 529-546.
    4. Kiyani, Roya & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Nitrogen doped graphene supported palladium-cobalt as a promising catalyst for methanol oxidation reaction: Synthesis, characterization and electrocatalytic performance," Energy, Elsevier, vol. 113(C), pages 1162-1173.
    5. Hosseini, Mir Ghasem & Mahmoodi, Raana & Daneshvari-Esfahlan, Vahid, 2018. "Ni@Pd core-shell nanostructure supported on multi-walled carbon nanotubes as efficient anode nanocatalysts for direct methanol fuel cells with membrane electrode assembly prepared by catalyst coated m," Energy, Elsevier, vol. 161(C), pages 1074-1084.
    6. Guo, Ningyuan & Zhang, Wencan & Li, Junqiu & Chen, Zheng & Li, Jianwei & Sun, Chao, 2024. "Predictive energy management of fuel cell plug-in hybrid electric vehicles: A co-state boundaries-oriented PMP optimization approach," Applied Energy, Elsevier, vol. 362(C).
    7. Yuan, Zhenyu & Zhang, Manna & Zuo, Kaiyuan & Ren, Yongqiang, 2018. "The effect of gravity on inner transport and cell performance in passive micro direct methanol fuel cell," Energy, Elsevier, vol. 150(C), pages 28-37.
    8. Yu, Bor-Chern & Wang, Yi-Chun & Lu, Hsin-Chun & Lin, Hsiu-Li & Shih, Chao-Ming & Kumar, S. Rajesh & Lue, Shingjiang Jessie, 2017. "Hydroxide-ion selective electrolytes based on a polybenzimidazole/graphene oxide composite membrane," Energy, Elsevier, vol. 134(C), pages 802-812.
    9. Iqbal, Mehroze & Laurent, Julien & Benmouna, Amel & Becherif, Mohamed & Ramadan, Haitham S. & Claude, Frederic, 2022. "Ageing-aware load following control for composite-cost optimal energy management of fuel cell hybrid electric vehicle," Energy, Elsevier, vol. 254(PA).
    10. Yang Gao & Changhong Liu & Yuan Liang & Sadegh Kouhestani Hamed & Fuwei Wang & Bo Bi, 2022. "Minimizing Energy Consumption and Powertrain Cost of Fuel Cell Hybrid Vehicles with Consideration of Different Driving Cycles and SOC Ranges," Energies, MDPI, vol. 15(17), pages 1-12, August.
    11. Macias, A. & Kandidayeni, M. & Boulon, L. & Trovão, J.P., 2021. "Fuel cell-supercapacitor topologies benchmark for a three-wheel electric vehicle powertrain," Energy, Elsevier, vol. 224(C).
    12. Mokesioluwa Fanoro & Mladen Božanić & Saurabh Sinha, 2022. "A Review of the Impact of Battery Degradation on Energy Management Systems with a Special Emphasis on Electric Vehicles," Energies, MDPI, vol. 15(16), pages 1-29, August.
    13. Jianying Liang & Yankun Li & Wenya Jia & Weikang Lin & Tiancai Ma, 2021. "Comparison of Two Energy Management Strategies Considering Power System Durability for PEMFC-LIB Hybrid Logistics Vehicle," Energies, MDPI, vol. 14(11), pages 1-24, June.
    14. Prapainainar, Paweena & Du, Zehui & Theampetch, Apichaya & Prapainainar, Chaiwat & Kongkachuichay, Paisan & Holmes, Stuart M., 2020. "Properties and DMFC performance of nafion/mordenite composite membrane fabricated by solution-casting method with different solvent ratio," Energy, Elsevier, vol. 190(C).
    15. Guo, Xiaokai & Yan, Xianguo & Chen, Zhi & Meng, Zhiyu, 2022. "Research on energy management strategy of heavy-duty fuel cell hybrid vehicles based on dueling-double-deep Q-network," Energy, Elsevier, vol. 260(C).
    16. Sharifi, Shima & Rahimi, Rahbar & Mohebbi-Kalhori, Davod & Colpan, C. Ozgur, 2020. "Coupled computational fluid dynamics-response surface methodology to optimize direct methanol fuel cell performance for greener energy generation," Energy, Elsevier, vol. 198(C).
    17. Zhang, Caizhi & Zeng, Tao & Wu, Qi & Deng, Chenghao & Chan, Siew Hwa & Liu, Zhixiang, 2021. "Improved efficiency maximization strategy for vehicular dual-stack fuel cell system considering load state of sub-stacks through predictive soft-loading," Renewable Energy, Elsevier, vol. 179(C), pages 929-944.
    18. Zuo, Jian & Steiner, Nadia Yousfi & Li, Zhongliang & Hissel, Daniel, 2024. "Health management review for fuel cells: Focus on action phase," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).
    19. Fang, Shuo & Zhang, Yufeng & Ma, Zezhong & Zou, Yuezhang & Liu, Xiaowei, 2016. "Development of a micro direct methanol fuel cell with heat control," Energy, Elsevier, vol. 116(P1), pages 978-985.
    20. Wang, Shunli & Fan, Yongcun & Jin, Siyu & Takyi-Aninakwa, Paul & Fernandez, Carlos, 2023. "Improved anti-noise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries," Reliability Engineering and System Safety, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221019587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.