IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i8p1305-d105997.html
   My bibliography  Save this article

Accelerating Sustainability by Hydropower Development in China: The Story of HydroLancang

Author

Listed:
  • Yan Zhang

    (Centre of Development Studies, University of Cambridge, Cambridge CB3 9DT, UK)

Abstract

Sustainable development is a shared responsibility. Accelerating sustainability of water–energy–people nexus and building a common awareness of issues pertaining to sustainable development are essential for any sort of success in this direction. Hydropower has been a useful sustainable energy for development, yet highly controversial. This paper reviews the overall situation of hydropower development and China’s energy reforms and policies, accompanied with a case study of hydropower development the Lancang River by the HydroLancang, aiming to illustrate the two opposite sides of hydropower development—economy and environment. The paper concludes with a neutral view of hydropower as the necessary facilitator for development. Water is a shared responsibility. Hydropower might not be the optimum solution to eliminate the tension between human demand of energy and finite natural resource and the rising pressure of climate change worldwide, but it serves well as an “Electricity Bridge” before better alternatives become available. This is a more balanced view of hydropower rather than two extreme viewpoints that present themselves: on the one hand, exaggerated claims of the human power to tame the wild river, and, on the other hand, the idealistic fantasy of preserving nature by abandoning all human activity.

Suggested Citation

  • Yan Zhang, 2017. "Accelerating Sustainability by Hydropower Development in China: The Story of HydroLancang," Sustainability, MDPI, vol. 9(8), pages 1-28, July.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:8:p:1305-:d:105997
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/8/1305/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/8/1305/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huang, Hailun & Yan, Zheng, 2009. "Present situation and future prospect of hydropower in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1652-1656, August.
    2. Chang, XiaoLin & Liu, Xinghong & Zhou, Wei, 2010. "Hydropower in China at present and its further development," Energy, Elsevier, vol. 35(11), pages 4400-4406.
    3. Tim Jackson & Peter Senker, 2011. "Prosperity without Growth: Economics for a Finite Planet," Energy & Environment, , vol. 22(7), pages 1013-1016, October.
    4. Peter Nolan, 2012. "Is China Buying the World?," Challenge, Taylor & Francis Journals, vol. 55(2), pages 108-118.
    5. David Lindley, 2010. "Smart grids: The energy storage problem," Nature, Nature, vol. 463(7277), pages 18-20, January.
    6. Vaclav Smil, 2010. "Energy Myths and Realities: Bringing Science to the Energy Policy Debate," Books, American Enterprise Institute, number 50339, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuedong Liang & Dongyang Si & Jing Xu, 2018. "Quantitative Evaluation of the Sustainable Development Capacity of Hydropower in China Based on Information Entropy," Sustainability, MDPI, vol. 10(2), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming, Zeng & Song, Xue & Mingjuan, Ma & Xiaoli, Zhu, 2013. "New energy bases and sustainable development in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 169-185.
    2. Zhang, Dahai & Wang, Jiaqi & Lin, Yonggang & Si, Yulin & Huang, Can & Yang, Jing & Huang, Bin & Li, Wei, 2017. "Present situation and future prospect of renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 865-871.
    3. Zhou, Jianzhong & Zhang, Yongchuan & Zhang, Rui & Ouyang, Shuo & Wang, Xuemin & Liao, Xiang, 2015. "Integrated optimization of hydroelectric energy in the upper and middle Yangtze River," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 481-512.
    4. Santalco, Aldo, 2012. "How and when China will exceed its renewable energy deployment targets," Energy Policy, Elsevier, vol. 51(C), pages 652-661.
    5. Liu, Dunnan & Zhao, Weidong & Li, Zhihao & Xu, Xiaofeng & Xiao, Bowen & Niu, Dongxiao, 2018. "Can hydropower develop as expected in China? A scenario analysis based on system dynamics model," Energy, Elsevier, vol. 161(C), pages 118-129.
    6. Hennig, Thomas & Wang, Wenling & Feng, Yan & Ou, Xiaokun & He, Daming, 2013. "Review of Yunnan's hydropower development. Comparing small and large hydropower projects regarding their environmental implications and socio-economic consequences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 585-595.
    7. Fang, Yiping & Deng, Wei, 2011. "The critical scale and section management of cascade hydropower exploitation in Southwestern China," Energy, Elsevier, vol. 36(10), pages 5944-5953.
    8. Huan-Feng Duan & Xichao Gao, 2019. "Flooding Control and Hydro-Energy Assessment for Urban Stormwater Drainage Systems under Climate Change: Framework Development and Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3523-3545, August.
    9. Ming, Zeng & Honglin, Li & Mingjuan, Ma & Na, Li & Song, Xue & Liang, Wang & Lilin, Peng, 2013. "Review on transaction status and relevant policies of southern route in China's West–East Power Transmission," Renewable Energy, Elsevier, vol. 60(C), pages 454-461.
    10. Shang, Yizi & Lu, Shibao & Ye, Yuntao & Liu, Ronghua & Shang, Ling & Liu, Chunna & Meng, Xianyong & Li, Xiaofei & Fan, Qixiang, 2018. "China’ energy-water nexus: Hydropower generation potential of joint operation of the Three Gorges and Qingjiang cascade reservoirs," Energy, Elsevier, vol. 142(C), pages 14-32.
    11. Niu, Shuwen & Liu, Yiyue & Ding, Yongxia & Qu, Wei, 2016. "China׳s energy systems transformation and emissions peak," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 782-795.
    12. Kong, Yigang & Wang, Jie & Kong, Zhigang & Song, Furong & Liu, Zhiqi & Wei, Congmei, 2015. "Small hydropower in China: The survey and sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 425-433.
    13. Xia, Bingqing & Qiang, Maoshan & Chen, Wenchao & Fan, Qixiang & Jiang, Hanchen & An, Nan, 2018. "A benefit-sharing model for hydropower projects based on stakeholder input-output analysis: A case study of the Xiluodu Project in China," Land Use Policy, Elsevier, vol. 73(C), pages 341-352.
    14. Wagner, Beatrice & Hauer, Christoph & Schoder, Angelika & Habersack, Helmut, 2015. "A review of hydropower in Austria: Past, present and future development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 304-314.
    15. Dongxiao Niu & Hao Zhen & Min Yu & Keke Wang & Lijie Sun & Xiaomin Xu, 2020. "Prioritization of Renewable Energy Alternatives for China by Using a Hybrid FMCDM Methodology with Uncertain Information," Sustainability, MDPI, vol. 12(11), pages 1-26, June.
    16. Bhutto, Abdul Waheed & Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2012. "Greener energy: Issues and challenges for Pakistan-hydel power prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2732-2746.
    17. Taitiya Kenneth Yuguda & Sunday Adiyoh Imanche & Tian Ze & Tosin Yinka Akintunde & Bobby Shekarau Luka, 2023. "Hydropower development, policy and partnership in the 21st century: A China-Nigeria outlook," Energy & Environment, , vol. 34(4), pages 1170-1204, June.
    18. Stua, Michele, 2013. "Evidence of the clean development mechanism impact on the Chinese electric power system's low-carbon transition," Energy Policy, Elsevier, vol. 62(C), pages 1309-1319.
    19. Albino Prada-Blanco & Patricio Sanchez-Fernandez, 2017. "Empirical Analysis of the Transformation of Economic Growth into Social Development at an International Level," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 130(3), pages 983-1003, February.
    20. Kumar, Deepak & Katoch, S.S., 2015. "Sustainability suspense of small hydropower projects: A study from western Himalayan region of India," Renewable Energy, Elsevier, vol. 76(C), pages 220-233.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:8:p:1305-:d:105997. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.