IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i2p1165-1177d23756.html
   My bibliography  Save this article

Evaluation of Power Generation Efficiency of Cascade Hydropower Plants: A Case Study

Author

Listed:
  • Ying Zheng

    (State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China)

  • Xudong Fu

    (State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China)

  • Jiahua Wei

    (State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China)

Abstract

Effective utilization of scarce water resources has presented a significant challenge to respond to the needs created by rapid economic growth in China. In this study, the efficiency of the joint operation of the Three Gorges and Gezhouba cascade hydropower plants in terms of power generation was evaluated on the basis of a precise simulation-optimization technique. The joint operation conditions of the Three Gorges and Gezhouba hydropower plants between 2004 and 2010 were utilized in this research in order to investigate the major factors that could affect power output of the cascade complex. The results showed that the current power output of the Three Gorges and Gezhouba cascade complex had already reached around 90% of the maximum theoretical value. Compared to other influencing factors evaluated in this study, the accuracy of hydrological forecasts and flood control levels can have significant impact on the power generating efficiency, whereas the navigation has a minor influence. This research provides a solid quantitative-based methodology to assess the operation efficiency of cascade hydropower plants, and more importantly, proposes potential methods that could improve the operation efficiency of cascade hydropower plants.

Suggested Citation

  • Ying Zheng & Xudong Fu & Jiahua Wei, 2013. "Evaluation of Power Generation Efficiency of Cascade Hydropower Plants: A Case Study," Energies, MDPI, vol. 6(2), pages 1-13, February.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:2:p:1165-1177:d:23756
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/2/1165/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/2/1165/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manfred Lenzen, 2010. "Current State of Development of Electricity-Generating Technologies: A Literature Review," Energies, MDPI, vol. 3(3), pages 1-130, March.
    2. Shenglian Guo & Jionghong Chen & Yu Li & Pan Liu & Tianyuan Li, 2011. "Joint Operation of the Multi-Reservoir System of the Three Gorges and the Qingjiang Cascade Reservoirs," Energies, MDPI, vol. 4(7), pages 1-15, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shang, Yizi & Lu, Shibao & Ye, Yuntao & Liu, Ronghua & Shang, Ling & Liu, Chunna & Meng, Xianyong & Li, Xiaofei & Fan, Qixiang, 2018. "China’ energy-water nexus: Hydropower generation potential of joint operation of the Three Gorges and Qingjiang cascade reservoirs," Energy, Elsevier, vol. 142(C), pages 14-32.
    2. Perica Ilak & Slavko Krajcar & Ivan Rajšl & Marko Delimar, 2014. "Pricing Energy and Ancillary Services in a Day-Ahead Market for a Price-Taker Hydro Generating Company Using a Risk-Constrained Approach," Energies, MDPI, vol. 7(4), pages 1-26, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gottschamer, L. & Zhang, Q., 2016. "Interactions of factors impacting implementation and sustainability of renewable energy sourced electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 164-174.
    2. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "South Korean energy scenarios show how nuclear power can reduce future energy and environmental costs," Energy Policy, Elsevier, vol. 74(C), pages 569-578.
    3. Spänhoff, Bernd, 2014. "Current status and future prospects of hydropower in Saxony (Germany) compared to trends in Germany, the European Union and the World," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 518-525.
    4. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "Nuclear power can reduce emissions and maintain a strong economy: Rating Australia’s optimal future electricity-generation mix by technologies and policies," Applied Energy, Elsevier, vol. 136(C), pages 712-725.
    5. Amy H. I. Lee & Chun Yu Lin & He-Yau Kang & Wen Hsin Lee, 2012. "An Integrated Performance Evaluation Model for the Photovoltaics Industry," Energies, MDPI, vol. 5(4), pages 1-21, April.
    6. Lenzen, Manfred & McBain, Bonnie & Trainer, Ted & Jütte, Silke & Rey-Lescure, Olivier & Huang, Jing, 2016. "Simulating low-carbon electricity supply for Australia," Applied Energy, Elsevier, vol. 179(C), pages 553-564.
    7. Tao Bai & Lianzhou Wu & Jian-xia Chang & Qiang Huang, 2015. "Multi-Objective Optimal Operation Model of Cascade Reservoirs and Its Application on Water and Sediment Regulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2751-2770, June.
    8. Pine, Matthew K. & Schmitt, Pál & Culloch, Ross M. & Lieber, Lilian & Kregting, Louise T., 2019. "Providing ecological context to anthropogenic subsea noise: Assessing listening space reductions of marine mammals from tidal energy devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 49-57.
    9. Kolesnik, Sergei & Sitbon, Moshe & Gadelovits, Shlomo & Suntio, Teuvo & Kuperman, Alon, 2015. "Interfacing renewable energy sources for maximum power transfer—Part II: Dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1771-1783.
    10. Yuan Si & Xiang Li & Dongqin Yin & Ronghua Liu & Jiahua Wei & Yuefei Huang & Tiejian Li & Jiahong Liu & Shenglong Gu & Guangqian Wang, 2018. "Evaluating and optimizing the operation of the hydropower system in the Upper Yellow River: A general LINGO-based integrated framework," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-25, January.
    11. Wang Zhang & Pan Liu & Xizhen Chen & Li Wang & Xueshan Ai & Maoyuan Feng & Dedi Liu & Yuanyuan Liu, 2016. "Optimal Operation of Multi-reservoir Systems Considering Time-lags of Flood Routing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 523-540, January.
    12. John Dorrell & Keunjae Lee, 2020. "The Cost of Wind: Negative Economic Effects of Global Wind Energy Development," Energies, MDPI, vol. 13(14), pages 1-25, July.
    13. Francesca Ceglia & Adriano Macaluso & Elisa Marrasso & Carlo Roselli & Laura Vanoli, 2020. "Energy, Environmental, and Economic Analyses of Geothermal Polygeneration System Using Dynamic Simulations," Energies, MDPI, vol. 13(18), pages 1-34, September.
    14. Shih-Chieh Huang & Shang-Lien Lo & Yen-Ching Lin, 2013. "To Re-Explore the Causality between Barriers to Renewable Energy Development: A Case Study of Wind Energy," Energies, MDPI, vol. 6(9), pages 1-24, August.
    15. Josip Lorincz & Ivana Bule & Milutin Kapov, 2014. "Performance Analyses of Renewable and Fuel Power Supply Systems for Different Base Station Sites," Energies, MDPI, vol. 7(12), pages 1-31, November.
    16. Zida Song & Quan Liu & Zhigen Hu & Chunsheng Zhang & Jinming Ren & Zhexin Wang & Jianhai Tian, 2020. "Construction Diversion Risk Assessment for Hydropower Development on Sediment-Rich Rivers," Energies, MDPI, vol. 13(4), pages 1-20, February.
    17. Liping Li & Pan Liu & David Rheinheimer & Chao Deng & Yanlai Zhou, 2014. "Identifying Explicit Formulation of Operating Rules for Multi-Reservoir Systems Using Genetic Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(6), pages 1545-1565, April.
    18. Lacour, S. & Chinese, T. & Alkadee, D. & Perilhon, C. & Descombes, G., 2012. "Energy and environmental balance of biogas for dual-fuel mobile applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1745-1753.
    19. Luqman Razzaq & Muhammad Farooq & M. A. Mujtaba & Farooq Sher & Muhammad Farhan & Muhammad Tahir Hassan & Manzoore Elahi M. Soudagar & A. E. Atabani & M. A. Kalam & Muhammad Imran, 2020. "Modeling Viscosity and Density of Ethanol-Diesel-Biodiesel Ternary Blends for Sustainable Environment," Sustainability, MDPI, vol. 12(12), pages 1-20, June.
    20. Tsuguhiro Takuno & Yutaro Kitamori & Ryo Takahashi & Takashi Hikihara, 2011. "AC Power Routing System in Home Based on Demand and Supply Utilizing Distributed Power Sources," Energies, MDPI, vol. 4(5), pages 1-10, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:2:p:1165-1177:d:23756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.