IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v139y2019icp739-752.html
   My bibliography  Save this article

Quantifying the revenue gain of operating a cascade hydropower plant system as a pumped-storage hydropower system

Author

Listed:
  • Ak, Mümtaz
  • Kentel, Elcin
  • Savasaneril, Secil

Abstract

Pumped-storage hydropower is one of the most viable large-scale energy storage options. When managed optimally, pumped-storage hydropower may also bring monetary benefits due to price variations in the electricity market. Two main concerns are the lack of suitable sites and potential environmental impacts, which can be alleviated by using already existing, closely situated reservoirs. The goal of this study is to develop operating strategies for cascade pumped-storage hydropower systems composed of already existing hydropower plants. Main challenges are the treatment of the stochastic behavior of inflows and hourly electricity price variations. In this study, monthly historical inflows are used as inputs to generate operating rule curves. Based on past electricity prices, a scenario-based approach is developed to reflect the uncertainty in electricity price variations. Combining the two approaches, nonlinear mathematical models are constructed to obtain average annual revenues for cascade hydropower plants and the pumped-storage hydropower systems. The models are solved for the cascade multi-reservoir system in Coruh Basin of Turkey for five different scenarios based on electricity prices for years 2013–2017. The revenue gain ranged between 2.9% and 10.4%. It is concluded that operation of the cascade hydropower plant system in the pumped-storage mode brings additional revenue.

Suggested Citation

  • Ak, Mümtaz & Kentel, Elcin & Savasaneril, Secil, 2019. "Quantifying the revenue gain of operating a cascade hydropower plant system as a pumped-storage hydropower system," Renewable Energy, Elsevier, vol. 139(C), pages 739-752.
  • Handle: RePEc:eee:renene:v:139:y:2019:i:c:p:739-752
    DOI: 10.1016/j.renene.2019.02.118
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119302836
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.02.118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ak, Mumtaz & Kentel, Elcin & Savasaneril, Secil, 2017. "Operating policies for energy generation and revenue management in single-reservoir hydropower systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1253-1261.
    2. Shang, Yizi & Lu, Shibao & Ye, Yuntao & Liu, Ronghua & Shang, Ling & Liu, Chunna & Meng, Xianyong & Li, Xiaofei & Fan, Qixiang, 2018. "China’ energy-water nexus: Hydropower generation potential of joint operation of the Three Gorges and Qingjiang cascade reservoirs," Energy, Elsevier, vol. 142(C), pages 14-32.
    3. Chun-Tian Cheng & Wen-Chuan Wang & Dong-Mei Xu & K. Chau, 2008. "Optimizing Hydropower Reservoir Operation Using Hybrid Genetic Algorithm and Chaos," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(7), pages 895-909, July.
    4. Pérez-Díaz, J.I. & Millán, R. & García, D. & Guisández, I. & Wilhelmi, J.R., 2012. "Contribution of re-regulation reservoirs considering pumping capability to environmentally friendly hydropower operation," Energy, Elsevier, vol. 48(1), pages 144-152.
    5. Liu, Benxi & Cheng, Chuntian & Wang, Sen & Liao, Shengli & Chau, Kwok-Wing & Wu, Xinyu & Li, Weidong, 2018. "Parallel chance-constrained dynamic programming for cascade hydropower system operation," Energy, Elsevier, vol. 165(PA), pages 752-767.
    6. Hunt, Julian David & Freitas, Marcos Aurélio Vasconcelos & Pereira Junior, Amaro Olímipio, 2014. "Enhanced-Pumped-Storage: Combining pumped-storage in a yearly storage cycle with dams in cascade in Brazil," Energy, Elsevier, vol. 78(C), pages 513-523.
    7. Fleten, Stein-Erik & Haugstvedt, Daniel & Steinsbø, Jens Arne & Belsnes, Michael & Fleischmann, Franziska, 2011. "Bidding hydropower generation: Integrating short- and long-term scheduling," MPRA Paper 44450, University Library of Munich, Germany.
    8. Zhong-Kai Feng & Wen-Jing Niu & Jian-Zhong Zhou & Chun-Tian Cheng & Hui Qin & Zhi-Qiang Jiang, 2017. "Parallel Multi-Objective Genetic Algorithm for Short-Term Economic Environmental Hydrothermal Scheduling," Energies, MDPI, vol. 10(2), pages 1-22, January.
    9. Pérez-Díaz, Juan I. & Chazarra, M. & García-González, J. & Cavazzini, G. & Stoppato, A., 2015. "Trends and challenges in the operation of pumped-storage hydropower plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 767-784.
    10. Connolly, D. & Lund, H. & Finn, P. & Mathiesen, B.V. & Leahy, M., 2011. "Practical operation strategies for pumped hydroelectric energy storage (PHES) utilising electricity price arbitrage," Energy Policy, Elsevier, vol. 39(7), pages 4189-4196, July.
    11. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian & Zhou, Jian-zhong, 2017. "Peak shaving operation of hydro-thermal-nuclear plants serving multiple power grids by linear programming," Energy, Elsevier, vol. 135(C), pages 210-219.
    12. Sivakumar, N. & Das, Devadutta & Padhy, N.P. & Senthil Kumar, A.R. & Bisoyi, Nibedita, 2013. "Status of pumped hydro-storage schemes and its future in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 208-213.
    13. Ibrahim, H. & Ilinca, A. & Perron, J., 2008. "Energy storage systems--Characteristics and comparisons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1221-1250, June.
    14. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian & Wu, Xin-yu, 2017. "Optimization of hydropower system operation by uniform dynamic programming for dimensionality reduction," Energy, Elsevier, vol. 134(C), pages 718-730.
    15. Pujades, Estanislao & Orban, Philippe & Bodeux, Sarah & Archambeau, Pierre & Erpicum, Sébastien & Dassargues, Alain, 2017. "Underground pumped storage hydropower plants using open pit mines: How do groundwater exchanges influence the efficiency?," Applied Energy, Elsevier, vol. 190(C), pages 135-146.
    16. Muche, Thomas, 2014. "Optimal operation and forecasting policy for pump storage plants in day-ahead markets," Applied Energy, Elsevier, vol. 113(C), pages 1089-1099.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barbaros, Efe & Aydin, Ismail & Celebioglu, Kutay, 2021. "Feasibility of pumped storage hydropower with existing pricing policy in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    2. He, YongXiu & Liu, PeiLiang & Zhou, Li & Zhang, Yan & Liu, Yang, 2021. "Competitive model of pumped storage power plants participating in electricity spot Market——in case of China," Renewable Energy, Elsevier, vol. 173(C), pages 164-176.
    3. Zhang, Juntao & Cheng, Chuntian & Yu, Shen & Shen, Jianjian & Wu, Xinyu & Su, Huaying, 2022. "Preliminary feasibility analysis for remaking the function of cascade hydropower stations to enhance hydropower flexibility: A case study in China," Energy, Elsevier, vol. 260(C).
    4. Toufani, Parinaz & Nadar, Emre & Kocaman, Ayse Selin, 2022. "Short-term assessment of pumped hydro energy storage configurations: Up, down, or closed?," Renewable Energy, Elsevier, vol. 201(P1), pages 1086-1095.
    5. Zhang, Han & Gao, Xueping & Sun, Bowen & Qin, Zixue & Zhu, Hongtao, 2020. "Parameter analysis and performance optimization for the vertical pipe intake-outlet of a pumped hydro energy storage station," Renewable Energy, Elsevier, vol. 162(C), pages 1499-1518.
    6. Ju, Chang & Ding, Tao & Jia, Wenhao & Mu, Chenggang & Zhang, Hongji & Sun, Yuge, 2023. "Two-stage robust unit commitment with the cascade hydropower stations retrofitted with pump stations," Applied Energy, Elsevier, vol. 334(C).
    7. Suwal, Naresh & Huang, Xianfeng & Kuriqi, Alban & Chen, Yingqin & Pandey, Kamal Prasad & Bhattarai, Khem Prasad, 2020. "Optimisation of cascade reservoir operation considering environmental flows for different environmental management classes," Renewable Energy, Elsevier, vol. 158(C), pages 453-464.
    8. Tan, Qiaofeng & Nie, Zhuang & Wen, Xin & Su, Huaying & Fang, Guohua & Zhang, Ziyi, 2024. "Complementary scheduling rules for hybrid pumped storage hydropower-photovoltaic power system reconstructing from conventional cascade hydropower stations," Applied Energy, Elsevier, vol. 355(C).
    9. Zhang, Pengfei & Ma, Chao & Lian, Jijian & Li, Peiyao & Liu, Lu, 2024. "Medium- and long-term operation optimization of the LCHES-WP hybrid power system considering the settlement rules of the electricity trading market," Applied Energy, Elsevier, vol. 359(C).
    10. Ren, Siyue & Feng, Xiao, 2021. "Emergy evaluation of ladder hydropower generation systems in the middle and lower reaches of the Lancang River," Renewable Energy, Elsevier, vol. 169(C), pages 1038-1050.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niu, Wen-jing & Feng, Zhong-kai & Cheng, Chun-tian, 2018. "Optimization of variable-head hydropower system operation considering power shortage aspect with quadratic programming and successive approximation," Energy, Elsevier, vol. 143(C), pages 1020-1028.
    2. Feng, Zhong-kai & Niu, Wen-jing & Wang, Sen & Cheng, Chun-tian & Jiang, Zhi-qiang & Qin, Hui & Liu, Yi, 2018. "Developing a successive linear programming model for head-sensitive hydropower system operation considering power shortage aspect," Energy, Elsevier, vol. 155(C), pages 252-261.
    3. Vasudevan, Krishnakumar R. & Ramachandaramurthy, Vigna K. & Venugopal, Gomathi & Ekanayake, J.B. & Tiong, S.K., 2021. "Variable speed pumped hydro storage: A review of converters, controls and energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Emmanouil, Stergios & Nikolopoulos, Efthymios I. & François, Baptiste & Brown, Casey & Anagnostou, Emmanouil N., 2021. "Evaluating existing water supply reservoirs as small-scale pumped hydroelectric storage options – A case study in Connecticut," Energy, Elsevier, vol. 226(C).
    5. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian & Zhou, Jian-zhong, 2017. "Peak shaving operation of hydro-thermal-nuclear plants serving multiple power grids by linear programming," Energy, Elsevier, vol. 135(C), pages 210-219.
    6. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian, 2018. "Optimal allocation of hydropower and hybrid electricity injected from inter-regional transmission lines among multiple receiving-end power grids in China," Energy, Elsevier, vol. 162(C), pages 444-452.
    7. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian, 2019. "China’s large-scale hydropower system: operation characteristics, modeling challenge and dimensionality reduction possibilities," Renewable Energy, Elsevier, vol. 136(C), pages 805-818.
    8. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian, 2018. "Optimization of hydropower reservoirs operation balancing generation benefit and ecological requirement with parallel multi-objective genetic algorithm," Energy, Elsevier, vol. 153(C), pages 706-718.
    9. Ali Thaeer Hammid & Omar I. Awad & Mohd Herwan Sulaiman & Saraswathy Shamini Gunasekaran & Salama A. Mostafa & Nallapaneni Manoj Kumar & Bashar Ahmad Khalaf & Yasir Amer Al-Jawhar & Raed Abdulkareem A, 2020. "A Review of Optimization Algorithms in Solving Hydro Generation Scheduling Problems," Energies, MDPI, vol. 13(11), pages 1-21, June.
    10. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    11. Zhongkai Feng & Wenjing Niu & Sen Wang & Chuntian Cheng & Zhenguo Song, 2019. "Mixed Integer Linear Programming Model for Peak Operation of Gas-Fired Generating Units with Disjoint-Prohibited Operating Zones," Energies, MDPI, vol. 12(11), pages 1-17, June.
    12. Feng, Zhong-kai & Niu, Wen-jing & Wang, Wen-chuan & Zhou, Jian-zhong & Cheng, Chun-tian, 2019. "A mixed integer linear programming model for unit commitment of thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy," Energy, Elsevier, vol. 175(C), pages 618-629.
    13. Ardizzon, G. & Cavazzini, G. & Pavesi, G., 2014. "A new generation of small hydro and pumped-hydro power plants: Advances and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 746-761.
    14. Chen, Sheng & Wang, Jing & Zhang, Jian & Yu, Xiaodong & He, Wei, 2020. "Transient behavior of two-stage load rejection for multiple units system in pumped storage plants," Renewable Energy, Elsevier, vol. 160(C), pages 1012-1022.
    15. Benato, Alberto & Stoppato, Anna, 2018. "Heat transfer fluid and material selection for an innovative Pumped Thermal Electricity Storage system," Energy, Elsevier, vol. 147(C), pages 155-168.
    16. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    17. Wenhua Wan & Jianshi Zhao & Jiabiao Wang, 2019. "Revisiting Water Supply Rule Curves with Hedging Theory for Climate Change Adaptation," Sustainability, MDPI, vol. 11(7), pages 1-21, March.
    18. Changjun Wang & Shutong Chen, 2019. "Planning of Cascade Hydropower Stations with the Consideration of Long-Term Operations under Uncertainties," Complexity, Hindawi, vol. 2019, pages 1-23, November.
    19. Loisel, Rodica & Simon, Corentin, 2021. "Market strategies for large-scale energy storage: Vertical integration versus stand-alone player," Energy Policy, Elsevier, vol. 151(C).
    20. Parra, David & Zhang, Xiaojin & Bauer, Christian & Patel, Martin K., 2017. "An integrated techno-economic and life cycle environmental assessment of power-to-gas systems," Applied Energy, Elsevier, vol. 193(C), pages 440-454.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:139:y:2019:i:c:p:739-752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.