IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v139y2017icp468-484.html
   My bibliography  Save this article

Renewable methane – A technology evaluation by multi-criteria decision making from a European perspective

Author

Listed:
  • Billig, E.
  • Thraen, D.

Abstract

Natural gas (NG), as one fossil fuel with multiple applications, plays a major role in Europe. However, to face global climate change and accelerate the transition to a sustainable society, fossil fuels, such as NG have to be replaced in the long term. The aim of this paper is to evaluate the technical and economic aspects of emerging technology concepts for the production of renewable methane from biomass. Biochemical and thermochemical concepts are considered within the scope of this paper. To evaluate the different conversion technologies an adapted AHP (analytic hierarchy process) was developed, based on two methods AHP and utility value analysis. In total, 99 alternatives (bio- and thermochemical conversion) were evaluated.

Suggested Citation

  • Billig, E. & Thraen, D., 2017. "Renewable methane – A technology evaluation by multi-criteria decision making from a European perspective," Energy, Elsevier, vol. 139(C), pages 468-484.
  • Handle: RePEc:eee:energy:v:139:y:2017:i:c:p:468-484
    DOI: 10.1016/j.energy.2017.07.164
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217313580
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.07.164?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johansson, Maria T., 2013. "Bio-synthetic natural gas as fuel in steel industry reheating furnaces – A case study of economic performance and effects on global CO2 emissions," Energy, Elsevier, vol. 57(C), pages 699-708.
    2. Gai, Chao & Dong, Yuping & Zhang, Tonghui, 2014. "Downdraft gasification of corn straw as a non-woody biomass: Effects of operating conditions on chlorides distribution," Energy, Elsevier, vol. 71(C), pages 638-644.
    3. Weiser, Christian & Zeller, Vanessa & Reinicke, Frank & Wagner, Bernhard & Majer, Stefan & Vetter, Armin & Thraen, Daniela, 2014. "Integrated assessment of sustainable cereal straw potential and different straw-based energy applications in Germany," Applied Energy, Elsevier, vol. 114(C), pages 749-762.
    4. Gustavsson, Leif & Eriksson, Lisa & Sathre, Roger, 2011. "Costs and CO2 benefits of recovering, refining and transporting logging residues for fossil fuel replacement," Applied Energy, Elsevier, vol. 88(1), pages 192-197, January.
    5. Billig, Eric & Thrän, Daniela, 2016. "Evaluation of biomethane technologies in Europe – Technical concepts under the scope of a Delphi-Survey embedded in a multi-criteria analysis," Energy, Elsevier, vol. 114(C), pages 1176-1186.
    6. Dinca, Cristian & Badea, Adrian & Rousseaux, Patrick & Apostol, Tiberiu, 2007. "A multi-criteria approach to evaluate the natural gas energy systems," Energy Policy, Elsevier, vol. 35(11), pages 5754-5765, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & de Santoli, Livio, 2022. "Can the renewable energy share increase in electricity and gas grids takes out the competitiveness of gas-driven CHP plants for distributed generation?," Energy, Elsevier, vol. 256(C).
    2. Khatiwada, Dilip & Vasudevan, Rohan Adithya & Santos, Bruno Henrique, 2022. "Decarbonization of natural gas systems in the EU – Costs, barriers, and constraints of hydrogen production with a case study in Portugal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Indre Siksnelyte & Edmundas Kazimieras Zavadskas & Dalia Streimikiene & Deepak Sharma, 2018. "An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development Issues," Energies, MDPI, vol. 11(10), pages 1-21, October.
    4. Federica Cucchiella & Idiano D'Adamo & Massimo Gastaldi, 2017. "Biomethane: A Renewable Resource as Vehicle Fuel," Resources, MDPI, vol. 6(4), pages 1-13, October.
    5. Lorenzi, Guido & Lanzini, Andrea & Santarelli, Massimo & Martin, Andrew, 2017. "Exergo-economic analysis of a direct biogas upgrading process to synthetic natural gas via integrated high-temperature electrolysis and methanation," Energy, Elsevier, vol. 141(C), pages 1524-1537.
    6. Baena-Moreno, Francisco M. & Gonzalez-Castaño, Miriam & Arellano-García, Harvey & Reina, T.R., 2021. "Exploring profitability of bioeconomy paths: Dimethyl ether from biogas as case study," Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    2. Vasiliki Tzelepi & Myrto Zeneli & Dimitrios-Sotirios Kourkoumpas & Emmanouil Karampinis & Antonios Gypakis & Nikos Nikolopoulos & Panagiotis Grammelis, 2020. "Biomass Availability in Europe as an Alternative Fuel for Full Conversion of Lignite Power Plants: A Critical Review," Energies, MDPI, vol. 13(13), pages 1-26, July.
    3. Ren, Hongbo & Gao, Weijun & Zhou, Weisheng & Nakagami, Ken'ichi, 2009. "Multi-criteria evaluation for the optimal adoption of distributed residential energy systems in Japan," Energy Policy, Elsevier, vol. 37(12), pages 5484-5493, December.
    4. Soha, Tamás & Papp, Luca & Csontos, Csaba & Munkácsy, Béla, 2021. "The importance of high crop residue demand on biogas plant site selection, scaling and feedstock allocation – A regional scale concept in a Hungarian study area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Sebastian Hagel & Fokko Schütt, 2024. "Reinforcement Fiber Production from Wheat Straw for Wastepaper-Based Packaging Using Steam Refining with Sodium Carbonate," Clean Technol., MDPI, vol. 6(1), pages 1-17, March.
    6. Venturini, Giada & Pizarro-Alonso, Amalia & Münster, Marie, 2019. "How to maximise the value of residual biomass resources: The case of straw in Denmark," Applied Energy, Elsevier, vol. 250(C), pages 369-388.
    7. Gustavsson, Leif & Haus, Sylvia & Ortiz, Carina A. & Sathre, Roger & Truong, Nguyen Le, 2015. "Climate effects of bioenergy from forest residues in comparison to fossil energy," Applied Energy, Elsevier, vol. 138(C), pages 36-50.
    8. Gustavsson, Leif & Haus, Sylvia & Lundblad, Mattias & Lundström, Anders & Ortiz, Carina A. & Sathre, Roger & Truong, Nguyen Le & Wikberg, Per-Erik, 2017. "Climate change effects of forestry and substitution of carbon-intensive materials and fossil fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 612-624.
    9. Chun-Chieh Tseng & Jun-Yi Zeng & Min-Liang Hsieh & Chih-Hung Hsu, 2022. "Analysis of Innovation Drivers of New and Old Kinetic Energy Conversion Using a Hybrid Multiple-Criteria Decision-Making Model in the Post-COVID-19 Era: A Chinese Case," Mathematics, MDPI, vol. 10(20), pages 1-25, October.
    10. Gunarathne, Duleeka Sandamali & Mellin, Pelle & Yang, Weihong & Pettersson, Magnus & Ljunggren, Rolf, 2016. "Performance of an effectively integrated biomass multi-stage gasification system and a steel industry heat treatment furnace," Applied Energy, Elsevier, vol. 170(C), pages 353-361.
    11. Simone Bergonzoli & Alessandro Suardi & Negar Rezaie & Vincenzo Alfano & Luigi Pari, 2020. "An Innovative System for Maize Cob and Wheat Chaff Harvesting: Simultaneous Grain and Residues Collection," Energies, MDPI, vol. 13(5), pages 1-15, March.
    12. Selleneit, Volker & Stöckl, Martin & Holzhammer, Uwe, 2020. "System efficiency – Methodology for rating of industrial utilities in electricity grids with a high share of variable renewable energies – A first approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    13. Hoefnagels, Ric & Resch, Gustav & Junginger, Martin & Faaij, André, 2014. "International and domestic uses of solid biofuels under different renewable energy support scenarios in the European Union," Applied Energy, Elsevier, vol. 131(C), pages 139-157.
    14. Jovanovic, Marina & Turanjanin, Valentina & Bakic, Vukman & Pezo, Milada & Vucicevic, Biljana, 2011. "Sustainability estimation of energy system options that use gas and renewable resources for domestic hot water production," Energy, Elsevier, vol. 36(4), pages 2169-2175.
    15. Renata Marks-Bielska & Stanisław Bielski & Anastasija Novikova & Kęstutis Romaneckas, 2019. "Straw Stocks as a Source of Renewable Energy. A Case Study of a District in Poland," Sustainability, MDPI, vol. 11(17), pages 1-18, August.
    16. Maria Pergola & Angelo Rita & Alfonso Tortora & Maria Castellaneta & Marco Borghetti & Antonio Sergio De Franchi & Antonio Lapolla & Nicola Moretti & Giovanni Pecora & Domenico Pierangeli & Luigi Toda, 2020. "Identification of Suitable Areas for Biomass Power Plant Construction through Environmental Impact Assessment of Forest Harvesting Residues Transportation," Energies, MDPI, vol. 13(11), pages 1-16, May.
    17. Gai, Chao & Dong, Yuping & Zhang, Tonghui, 2014. "Downdraft gasification of corn straw as a non-woody biomass: Effects of operating conditions on chlorides distribution," Energy, Elsevier, vol. 71(C), pages 638-644.
    18. Murphy, Fionnuala & Devlin, Ger & McDonnell, Kevin, 2014. "Forest biomass supply chains in Ireland: A life cycle assessment of GHG emissions and primary energy balances," Applied Energy, Elsevier, vol. 116(C), pages 1-8.
    19. Piotr Gradziuk & Barbara Gradziuk & Anna Trocewicz & Błażej Jendrzejewski, 2020. "Potential of Straw for Energy Purposes in Poland—Forecasts Based on Trend and Causal Models," Energies, MDPI, vol. 13(19), pages 1-22, September.
    20. Bernardo Llamas & Álvaro Hernández & Luis Felipe Mazadiego & Juan Pous, 2016. "Economic modeling of the CO 2 transportation phase and its application to the Duero Basin, Spain," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 6(5), pages 648-661, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:139:y:2017:i:c:p:468-484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.