IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v6y2017i4p58-d115981.html
   My bibliography  Save this article

Biomethane: A Renewable Resource as Vehicle Fuel

Author

Listed:
  • Federica Cucchiella

    (Department of Industrial and Information Engineering and Economics, University of L’Aquila, Via G. Gronchi 18, 67100 L’Aquila, Italy)

  • Idiano D'Adamo

    (Department of Industrial and Information Engineering and Economics, University of L’Aquila, Via G. Gronchi 18, 67100 L’Aquila, Italy)

  • Massimo Gastaldi

    (Department of Industrial and Information Engineering and Economics, University of L’Aquila, Via G. Gronchi 18, 67100 L’Aquila, Italy)

Abstract

The European Union (EU) has set a mandatory target for renewable fuels of 10% for each member state by 2020. Biomethane is a renewable energy representing an alternative to the use of fossil fuels in the transport sector. This resource is a solution to reach this target. Furthermore, it contributes to reducing carbon dioxide emissions, gives social benefits and increases the security supply. Sustainability is reached also when the economic opportunities are verified. This work studies the profitability of small plants of biomethane, which is sold as vehicle fuel using the Net Present Value (NPV) and Discounted Payback Time (DPBT). The paper shows in detail the method used for the economic assessment of two typologies of feedstock recovered: (i) municipal solid waste and (ii) agricultural waste. Detailed information about the various parameters that affect the profitability of biomethane is given, and several case studies are analyzed as a function of two variables: subsidies and selling price. The results support the commercialization of small-scale plants, reducing also several environmental issues. The role of subsidies is strategic, and the profitability is verified only in some case studies

Suggested Citation

  • Federica Cucchiella & Idiano D'Adamo & Massimo Gastaldi, 2017. "Biomethane: A Renewable Resource as Vehicle Fuel," Resources, MDPI, vol. 6(4), pages 1-13, October.
  • Handle: RePEc:gam:jresou:v:6:y:2017:i:4:p:58-:d:115981
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/6/4/58/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/6/4/58/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Billig, E. & Thraen, D., 2017. "Renewable methane – A technology evaluation by multi-criteria decision making from a European perspective," Energy, Elsevier, vol. 139(C), pages 468-484.
    2. Uusitalo, V. & Soukka, R. & Horttanainen, M. & Niskanen, A. & Havukainen, J., 2013. "Economics and greenhouse gas balance of biogas use systems in the Finnish transportation sector," Renewable Energy, Elsevier, vol. 51(C), pages 132-140.
    3. O'Shea, Richard & Wall, David M. & Kilgallon, Ian & Browne, James D. & Murphy, Jerry D., 2017. "Assessing the total theoretical, and financially viable, resource of biomethane for injection to a natural gas network in a region," Applied Energy, Elsevier, vol. 188(C), pages 237-256.
    4. Iana Vassileva & Richard Thygesen & Javier Campillo & Sebastian Schwede, 2015. "From Goals to Action: The Efforts for Increasing Energy Efficiency and Integration of Renewable Sources in Eskilstuna, Sweden," Resources, MDPI, vol. 4(3), pages 1-18, July.
    5. Alexis Schmid & Mireille Batton-Hubert & Pascale Naquin & Rémy Gourdon, 2016. "Multi-Criteria Evaluation of End-of-Life Vehicles’ Dismantling Scenarios with Respect to Technical Performance and Sustainability Issues," Resources, MDPI, vol. 5(4), pages 1-15, December.
    6. Sgroi, Filippo & Foderà, Mario & Trapani, Anna Maria Di & Tudisca, Salvatore & Testa, Riccardo, 2015. "Economic evaluation of biogas plant size utilizing giant reed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 403-409.
    7. Bekkering, J. & Broekhuis, A.A. & van Gemert, W.J.T. & Hengeveld, E.J., 2013. "Balancing gas supply and demand with a sustainable gas supply chain – A study based on field data," Applied Energy, Elsevier, vol. 111(C), pages 842-852.
    8. Patrizio, P. & Chinese, D., 2016. "The impact of regional factors and new bio-methane incentive schemes on the structure, profitability and CO2 balance of biogas plants in Italy," Renewable Energy, Elsevier, vol. 99(C), pages 573-583.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Idiano D’Adamo & Pasquale Marcello Falcone & Massimo Gastaldi & Piergiuseppe Morone, 2019. "A Social Analysis of the Olive Oil Sector: The Role of Family Business," Resources, MDPI, vol. 8(3), pages 1-17, August.
    2. Aleksandr Ketov & Natalia Sliusar & Anna Tsybina & Iurii Ketov & Sergei Chudinov & Marina Krasnovskikh & Vladimir Bosnic, 2022. "Plant Biomass Conversion to Vehicle Liquid Fuel as a Path to Sustainability," Resources, MDPI, vol. 11(8), pages 1-11, August.
    3. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi, 2018. "Future Trajectories of Renewable Energy Consumption in the European Union," Resources, MDPI, vol. 7(1), pages 1-13, February.
    4. Catalano, Giovanni & D'Adamo, Idiano & Gastaldi, Massimo & Nizami, Abdul-Sattar & Ribichini, Marco, 2024. "Incentive policies in biomethane production toward circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Catalano, Giovanni & D'Adamo, Idiano & Gastaldi, Massimo & Nizami, Abdul-Sattar & Ribichini, Marco, 2024. "Incentive policies in biomethane production toward circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    2. Doddapaneni, Tharaka Rama Krishna C. & Praveenkumar, Ramasamy & Tolvanen, Henrik & Rintala, Jukka & Konttinen, Jukka, 2018. "Techno-economic evaluation of integrating torrefaction with anaerobic digestion," Applied Energy, Elsevier, vol. 213(C), pages 272-284.
    3. Gil-Carrera, Laura & Browne, James D. & Kilgallon, Ian & Murphy, Jerry D., 2019. "Feasibility study of an off-grid biomethane mobile solution for agri-waste," Applied Energy, Elsevier, vol. 239(C), pages 471-481.
    4. Keogh, Niamh & Corr, D. & Monaghan, R.F.D, 2022. "Biogenic renewable gas injection into natural gas grids: A review of technical and economic modelling studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Andante Hadi Pandyaswargo & Premakumara Jagath Dickella Gamaralalage & Chen Liu & Michael Knaus & Hiroshi Onoda & Faezeh Mahichi & Yanghui Guo, 2019. "Challenges and an Implementation Framework for Sustainable Municipal Organic Waste Management Using Biogas Technology in Emerging Asian Countries," Sustainability, MDPI, vol. 11(22), pages 1-27, November.
    6. Leino, M. & Uusitalo, V. & Grönman, A. & Nerg, J. & Horttanainen, M. & Soukka, R. & Pyrhönen, J., 2016. "Economics and greenhouse gas balance of distributed electricity production at sawmills using hermetic turbogenerator," Renewable Energy, Elsevier, vol. 88(C), pages 102-111.
    7. Bekkering, J. & Hengeveld, E.J. & van Gemert, W.J.T. & Broekhuis, A.A., 2015. "Will implementation of green gas into the gas supply be feasible in the future?," Applied Energy, Elsevier, vol. 140(C), pages 409-417.
    8. Padi, Richard Kingsley & Douglas, Sean & Murphy, Fionnuala, 2023. "Techno-economic potentials of integrating decentralised biomethane production systems into existing natural gas grids," Energy, Elsevier, vol. 283(C).
    9. Ewelina Olba-Zięty & Mariusz Jerzy Stolarski & Michał Krzyżaniak, 2021. "Economic Evaluation of the Production of Perennial Crops for Energy Purposes—A Review," Energies, MDPI, vol. 14(21), pages 1-16, November.
    10. Dandikas, Vasilis & Heuwinkel, Hauke & Lichti, Fabian & Eckl, Thomas & Drewes, Jörg E. & Koch, Konrad, 2018. "Correlation between hydrolysis rate constant and chemical composition of energy crops," Renewable Energy, Elsevier, vol. 118(C), pages 34-42.
    11. O'Shea, R. & Wall, D.M. & Murphy, J.D., 2017. "An energy and greenhouse gas comparison of centralised biogas production with road haulage of pig slurry, and decentralised biogas production with biogas transportation in a low-pressure pipe network," Applied Energy, Elsevier, vol. 208(C), pages 108-122.
    12. Guerin, Turlough F., 2022. "Business model scaling can be used to activate and grow the biogas-to-grid market in Australia to decarbonise hard-to-abate industries: An application of entrepreneurial management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    13. Grzegorz Piechota & Bartłomiej Igliński, 2021. "Biomethane in Poland—Current Status, Potential, Perspective and Development," Energies, MDPI, vol. 14(6), pages 1-32, March.
    14. Lorenzi, Guido & Lanzini, Andrea & Santarelli, Massimo & Martin, Andrew, 2017. "Exergo-economic analysis of a direct biogas upgrading process to synthetic natural gas via integrated high-temperature electrolysis and methanation," Energy, Elsevier, vol. 141(C), pages 1524-1537.
    15. Stürmer, Bernhard & Novakovits, Philipp & Luidolt, Alexander & Zweiler, Richard, 2019. "Potential of renewable methane by anaerobic digestion from existing plant stock – An economic reflection of an Austrian region," Renewable Energy, Elsevier, vol. 130(C), pages 920-929.
    16. Indre Siksnelyte & Edmundas Kazimieras Zavadskas & Dalia Streimikiene & Deepak Sharma, 2018. "An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development Issues," Energies, MDPI, vol. 11(10), pages 1-21, October.
    17. Baena-Moreno, Francisco M. & Gonzalez-Castaño, Miriam & Arellano-García, Harvey & Reina, T.R., 2021. "Exploring profitability of bioeconomy paths: Dimethyl ether from biogas as case study," Energy, Elsevier, vol. 225(C).
    18. Ó Céileachair, Dónal & O'Shea, Richard & Murphy, Jerry D. & Wall, David M., 2021. "Alternative energy management strategies for large industry in non-gas-grid regions using on-farm biomethane," Applied Energy, Elsevier, vol. 303(C).
    19. De Menna, Fabio & Malagnino, Remo Alessio & Vittuari, Matteo & Segrè, Andrea & Molari, Giovanni & Deligios, Paola A. & Solinas, Stefania & Ledda, Luigi, 2018. "Optimization of agricultural biogas supply chains using artichoke byproducts in existing plants," Agricultural Systems, Elsevier, vol. 165(C), pages 137-146.
    20. Akhlaghi, Shahin & Gedde, Ulf W. & Hedenqvist, Mikael S. & Braña, Maria T. Conde & Bellander, Martin, 2015. "Deterioration of automotive rubbers in liquid biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1238-1248.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:6:y:2017:i:4:p:58-:d:115981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.