IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v127y2014icp239-248.html
   My bibliography  Save this article

A combined effect absorption chiller for enhanced performance of combined cooling heating and power systems

Author

Listed:
  • Jayasekara, Saliya
  • Halgamuge, Saman K.

Abstract

Most industrial waste heat (e.g. waste heat from engines) is available as two or more heat sources or in a wider temperature range. Additionally, solar thermal energy has a higher harnessing efficiency at low temperatures while its work potential increases with temperature. However, well-established absorption cooling technologies, such as single and double effect absorption chillers, operate in relatively narrow firing temperature ranges. The use of the maximum temperature range of the sources or of multiple sources together increases the energy harnessing efficiency as well as the productivity of the absorption technology.

Suggested Citation

  • Jayasekara, Saliya & Halgamuge, Saman K., 2014. "A combined effect absorption chiller for enhanced performance of combined cooling heating and power systems," Applied Energy, Elsevier, vol. 127(C), pages 239-248.
  • Handle: RePEc:eee:appene:v:127:y:2014:i:c:p:239-248
    DOI: 10.1016/j.apenergy.2014.04.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914003882
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.04.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vereda, C. & Ventas, R. & Lecuona, A. & Venegas, M., 2012. "Study of an ejector-absorption refrigeration cycle with an adaptable ejector nozzle for different working conditions," Applied Energy, Elsevier, vol. 97(C), pages 305-312.
    2. Mateus, Tiago & Oliveira, Armando C., 2009. "Energy and economic analysis of an integrated solar absorption cooling and heating system in different building types and climates," Applied Energy, Elsevier, vol. 86(6), pages 949-957, June.
    3. Torrella, E. & Sánchez, D. & Cabello, R. & Larumbe, J.A. & Llopis, R., 2009. "On-site real-time evaluation of an air-conditioning direct-fired double-effect absorption chiller," Applied Energy, Elsevier, vol. 86(6), pages 968-975, June.
    4. Riley, J. M. & Probert, S. D., 1998. "Carbon-dioxide emissions from an integrated small-scale and absorption chiller system," Applied Energy, Elsevier, vol. 61(4), pages 193-207, December.
    5. Pandiyarajan, V. & Chinna Pandian, M. & Malan, E. & Velraj, R. & Seeniraj, R.V., 2011. "Experimental investigation on heat recovery from diesel engine exhaust using finned shell and tube heat exchanger and thermal storage system," Applied Energy, Elsevier, vol. 88(1), pages 77-87, January.
    6. Moya, M. & Bruno, J.C. & Eguia, P. & Torres, E. & Zamora, I. & Coronas, A., 2011. "Performance analysis of a trigeneration system based on a micro gas turbine and an air-cooled, indirect fired, ammonia–water absorption chiller," Applied Energy, Elsevier, vol. 88(12), pages 4424-4440.
    7. Al-Alili, A. & Islam, M.D. & Kubo, I. & Hwang, Y. & Radermacher, R., 2012. "Modeling of a solar powered absorption cycle for Abu Dhabi," Applied Energy, Elsevier, vol. 93(C), pages 160-167.
    8. Trygg, Louise & Amiri, Shahnaz, 2007. "European perspective on absorption cooling in a combined heat and power system - A case study of energy utility and industries in Sweden," Applied Energy, Elsevier, vol. 84(12), pages 1319-1337, December.
    9. Jayasekara, Saliya & Halgamuge, Saman K., 2013. "Mathematical modeling and experimental verification of an absorption chiller including three dimensional temperature and concentration distributions," Applied Energy, Elsevier, vol. 106(C), pages 232-242.
    10. Guo, Jiangfeng & Huai, Xiulan & Li, Xunfeng & Xu, Mingtian, 2012. "Performance analysis of Isopropanol–Acetone–Hydrogen chemical heat pump," Applied Energy, Elsevier, vol. 93(C), pages 261-267.
    11. Somers, C. & Mortazavi, A. & Hwang, Y. & Radermacher, R. & Rodgers, P. & Al-Hashimi, S., 2011. "Modeling water/lithium bromide absorption chillers in ASPEN Plus," Applied Energy, Elsevier, vol. 88(11), pages 4197-4205.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Ding & Liu, Zijian & Bai, Yin & Cheng, Rui & Gong, Maoqiong, 2022. "Study on the multi-energy complementary absorption system applied for combined cooling and heating in cold winter and hot summer areas," Applied Energy, Elsevier, vol. 312(C).
    2. Siddique, Muhammad Zeeshan & Badar, Abdul Waheed & Siddiqui, M. Salman & Butt, Fahad Sarfraz & Saleem, Muhammad & Mahmood, Khalid & Fazal, Imran, 2022. "Performance analysis of double effect solar absorption cooling system with different schemes of hot/cold auxiliary integration and parallel-serial arrangement of solar field," Energy, Elsevier, vol. 245(C).
    3. Al-Mousawi, Fadhel Noraldeen & Al-Dadah, Raya & Mahmoud, Saad, 2016. "Low grade heat driven adsorption system for cooling and power generation with small-scale radial inflow turbine," Applied Energy, Elsevier, vol. 183(C), pages 1302-1316.
    4. Wang, Jialong & Wu, Jingyin & Wang, Hongbin, 2015. "Experimental investigation of a dual-source powered absorption chiller based on gas engine waste heat and solar thermal energy," Energy, Elsevier, vol. 88(C), pages 680-689.
    5. Zhang, Jifu & Cui, Peizhe & Yang, Sheng & Zhou, Yaru & Du, Wei & Wang, Yinglong & Deng, Chengwei & Wang, Shuai, 2023. "Thermodynamic analysis of SOFC–CCHP system based on municipal sludge plasma gasification with carbon capture," Applied Energy, Elsevier, vol. 336(C).
    6. Wu, Wei & Shi, Wenxing & Wang, Jian & Wang, Baolong & Li, Xianting, 2016. "Experimental investigation on NH3–H2O compression-assisted absorption heat pump (CAHP) for low temperature heating under lower driving sources," Applied Energy, Elsevier, vol. 176(C), pages 258-271.
    7. Chen, Qun & Wang, Yi-Fei & Xu, Yun-Chao, 2015. "A thermal resistance-based method for the optimal design of central variable water/air volume chiller systems," Applied Energy, Elsevier, vol. 139(C), pages 119-130.
    8. Sheykhi, Mohammad & Chahartaghi, Mahmood & Safaei Pirooz, Amir Ali & Flay, Richard G.J., 2020. "Investigation of the effects of operating parameters of an internal combustion engine on the performance and fuel consumption of a CCHP system," Energy, Elsevier, vol. 211(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jayasekara, Saliya & Halgamuge, Saman K., 2013. "Mathematical modeling and experimental verification of an absorption chiller including three dimensional temperature and concentration distributions," Applied Energy, Elsevier, vol. 106(C), pages 232-242.
    2. Alobaid, Mohammad & Hughes, Ben & Calautit, John Kaiser & O’Connor, Dominic & Heyes, Andrew, 2017. "A review of solar driven absorption cooling with photovoltaic thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 728-742.
    3. Balghouthi, M. & Chahbani, M.H. & Guizani, A., 2012. "Investigation of a solar cooling installation in Tunisia," Applied Energy, Elsevier, vol. 98(C), pages 138-148.
    4. Udomsri, Seksan & Martin, Andrew R. & Martin, Viktoria, 2011. "Thermally driven cooling coupled with municipal solid waste-fired power plant: Application of combined heat, cooling and power in tropical urban areas," Applied Energy, Elsevier, vol. 88(5), pages 1532-1542, May.
    5. González-Gil, A. & Izquierdo, M. & Marcos, J.D. & Palacios, E., 2012. "New flat-fan sheets adiabatic absorber for direct air-cooled LiBr/H2O absorption machines: Simulation, parametric study and experimental results," Applied Energy, Elsevier, vol. 98(C), pages 162-173.
    6. Chen, Guansheng & Liu, Chongchong & Li, Nanshuo & Li, Feng, 2017. "A study on heat absorbing and vapor generating characteristics of H2O/LiBr mixture in an evacuated tube," Applied Energy, Elsevier, vol. 185(P1), pages 294-299.
    7. Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
    8. Puig-Arnavat, Maria & Bruno, Joan Carles & Coronas, Alberto, 2014. "Modeling of trigeneration configurations based on biomass gasification and comparison of performance," Applied Energy, Elsevier, vol. 114(C), pages 845-856.
    9. Chan, Wai Mun & Leong, Yik Teeng & Foo, Ji Jinn & Chew, Irene Mei Leng, 2017. "Synthesis of energy efficient chilled and cooling water network by integrating waste heat recovery refrigeration system," Energy, Elsevier, vol. 141(C), pages 1555-1568.
    10. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
    11. Mustafa Erguvan & David W. MacPhee, 2018. "Energy and Exergy Analyses of Tube Banks in Waste Heat Recovery Applications," Energies, MDPI, vol. 11(8), pages 1-15, August.
    12. Mokri, Alaeddine & Aal Ali, Mona & Emziane, Mahieddine, 2013. "Solar energy in the United Arab Emirates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 340-375.
    13. Frank Bruno & Martin Belusko & Edward Halawa, 2019. "CO 2 Refrigeration and Heat Pump Systems—A Comprehensive Review," Energies, MDPI, vol. 12(15), pages 1-39, August.
    14. Reda, Francesco & Viot, Maxime & Sipilä, Kari & Helm, Martin, 2016. "Energy assessment of solar cooling thermally driven system configurations for an office building in a Nordic country," Applied Energy, Elsevier, vol. 166(C), pages 27-43.
    15. Xu, Min & Cai, Jun & Guo, Jiangfeng & Huai, Xiulan & Liu, Zhigang & Zhang, Hang, 2017. "Technical and economic feasibility of the Isopropanol-Acetone-Hydrogen chemical heat pump based on a lab-scale prototype," Energy, Elsevier, vol. 139(C), pages 1030-1039.
    16. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new ejector heat exchanger based on an ejector heat pump and a water-to-water heat exchanger," Applied Energy, Elsevier, vol. 121(C), pages 245-251.
    17. Amaris, Carlos & Vallès, Manel & Bourouis, Mahmoud, 2018. "Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review," Applied Energy, Elsevier, vol. 231(C), pages 826-853.
    18. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
    19. Amiri, Shahnaz & Trygg, Louise & Moshfegh, Bahram, 2009. "Assessment of the natural gas potential for heat and power generation in the County of Östergötland in Sweden," Energy Policy, Elsevier, vol. 37(2), pages 496-506, February.
    20. Kadam, Sambhaji T. & Gkouletsos, Dimitris & Hassan, Ibrahim & Rahman, Mohammad Azizur & Kyriakides, Alexios-Spyridon & Papadopoulos, Athanasios I. & Seferlis, Panos, 2020. "Investigation of binary, ternary and quaternary mixtures across solution heat exchanger used in absorption refrigeration and process modifications to improve cycle performance," Energy, Elsevier, vol. 198(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:127:y:2014:i:c:p:239-248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.