IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v138y2017icp616-628.html
   My bibliography  Save this article

Critical analysis of the energy performance indicators for road lighting systems in historical towns of central Italy

Author

Listed:
  • Leccese, Francesco
  • Salvadori, Giacomo
  • Rocca, Michele

Abstract

Energy demand represents a global challenge that calls for innovative energy solutions. Road lighting contributes in a small part to the overall worldwide electricity consumption, however the possibilities for energy saving are numerous. The road lighting should provide the required lighting quality, in the most energy efficient way as possible.

Suggested Citation

  • Leccese, Francesco & Salvadori, Giacomo & Rocca, Michele, 2017. "Critical analysis of the energy performance indicators for road lighting systems in historical towns of central Italy," Energy, Elsevier, vol. 138(C), pages 616-628.
  • Handle: RePEc:eee:energy:v:138:y:2017:i:c:p:616-628
    DOI: 10.1016/j.energy.2017.07.093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217312719
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.07.093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kostic, Miomir & Djokic, Lidija, 2009. "Recommendations for energy efficient and visually acceptable street lighting," Energy, Elsevier, vol. 34(10), pages 1565-1572.
    2. Giacomo Salvadori & Fabio Fantozzi & Michele Rocca & Francesco Leccese, 2016. "The Energy Audit Activity Focused on the Lighting Systems in Historical Buildings," Energies, MDPI, vol. 9(12), pages 1-13, November.
    3. Radulovic, Dusko & Skok, Srdjan & Kirincic, Vedran, 2011. "Energy efficiency public lighting management in the cities," Energy, Elsevier, vol. 36(4), pages 1908-1915.
    4. Lucia Cellucci & Chiara Burattini & Dionysia Drakou & Franco Gugliermetti & Fabio Bisegna & Andrea De Lieto Vollaro & Ferdinando Salata & Iacopo Golasi, 2015. "Urban Lighting Project for a Small Town: Comparing Citizens and Authority Benefits," Sustainability, MDPI, vol. 7(10), pages 1-15, October.
    5. Murray, Alan T. & Feng, Xin, 2016. "Public street lighting service standard assessment and achievement," Socio-Economic Planning Sciences, Elsevier, vol. 53(C), pages 14-22.
    6. Fabio Fantozzi & Francesco Leccese & Giacomo Salvadori & Michele Rocca & Marco Garofalo, 2016. "LED Lighting for Indoor Sports Facilities: Can Its Use Be Considered as Sustainable Solution from a Techno-Economic Standpoint?," Sustainability, MDPI, vol. 8(7), pages 1-13, June.
    7. Ardente, Fulvio & Beccali, Marco & Cellura, Maurizio & Mistretta, Marina, 2011. "Energy and environmental benefits in public buildings as a result of retrofit actions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 460-470, January.
    8. Beccali, Marco & Bonomolo, Marina & Ciulla, Giuseppina & Galatioto, Alessandra & Lo Brano, Valerio, 2015. "Improvement of energy efficiency and quality of street lighting in South Italy as an action of Sustainable Energy Action Plans. The case study of Comiso (RG)," Energy, Elsevier, vol. 92(P3), pages 394-408.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roman Sikora & Przemysław Markiewicz, 2020. "Assessment of Colorimetric Parameters for HPS Lamp with Electromagnetic Control Gear and Electronic Ballast," Energies, MDPI, vol. 13(11), pages 1-21, June.
    2. Lodovica Valetti & Gabriele Piccablotto & Rossella Taraglio & Anna Pellegrino, 2023. "Long-Term Monitoring Campaign of LED Street Lighting Systems: Focus on Photometric Performances, Maintenance and Energy Savings," Sustainability, MDPI, vol. 15(24), pages 1-32, December.
    3. Beccali, M. & Bonomolo, M. & Leccese, F. & Lista, D. & Salvadori, G., 2018. "On the impact of safety requirements, energy prices and investment costs in street lighting refurbishment design," Energy, Elsevier, vol. 165(PB), pages 739-759.
    4. Igor Wojnicki & Konrad Komnata & Leszek Kotulski, 2019. "Comparative Study of Road Lighting Efficiency in the Context of CEN/TR 13201 2004 and 2014 Lighting Standards and Dynamic Control," Energies, MDPI, vol. 12(8), pages 1-14, April.
    5. Annika K. Jägerbrand, 2020. "Synergies and Trade-Offs Between Sustainable Development and Energy Performance of Exterior Lighting," Energies, MDPI, vol. 13(9), pages 1-27, May.
    6. Dusan Gordic & Vladimir Vukasinovic & Zoran Kovacevic & Mladen Josijevic & Dubravka Zivkovic, 2021. "Assessing the Techno-Economic Effects of Replacing Energy-Inefficient Street Lighting with LED Corn Bulbs," Energies, MDPI, vol. 14(13), pages 1-16, June.
    7. José Adolfo Lozano-Miralles & Manuel Jesús Hermoso-Orzáez & Alfonso Gago-Calderón & Paulo Brito, 2019. "LCA Case Study to LED Outdoor Luminaries as a Circular Economy Solution to Local Scale," Sustainability, MDPI, vol. 12(1), pages 1-18, December.
    8. Rami David Orejon-Sanchez & Jose Ramon Andres-Diaz & Alfonso Gago-Calderon, 2021. "Autonomous Photovoltaic LED Urban Street Lighting: Technical, Economic, and Social Viability Analysis Based on a Case Study," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
    9. Konrad Henryk Bachanek & Blanka Tundys & Tomasz Wiśniewski & Ewa Puzio & Anna Maroušková, 2021. "Intelligent Street Lighting in a Smart City Concepts—A Direction to Energy Saving in Cities: An Overview and Case Study," Energies, MDPI, vol. 14(11), pages 1-19, May.
    10. Francesco Leccese & Davide Lista & Giacomo Salvadori & Marco Beccali & Marina Bonomolo, 2020. "On the Applicability of the Space Syntax Methodology for the Determination of Street Lighting Classes," Energies, MDPI, vol. 13(6), pages 1-12, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beccali, M. & Bonomolo, M. & Leccese, F. & Lista, D. & Salvadori, G., 2018. "On the impact of safety requirements, energy prices and investment costs in street lighting refurbishment design," Energy, Elsevier, vol. 165(PB), pages 739-759.
    2. Lodovica Valetti & Francesca Floris & Anna Pellegrino, 2021. "Renovation of Public Lighting Systems in Cultural Landscapes: Lighting and Energy Performance and Their Impact on Nightscapes," Energies, MDPI, vol. 14(2), pages 1-25, January.
    3. Lingyan Zhang & Shan Huang & Yunchen Zhu & Chen Hua & Mingjun Cheng & Song Yao & Yonghua Li, 2023. "Supply and Demand for Planning and Construction of Nighttime Urban Lighting: A Comparative Case Study of Binjiang District, Hangzhou," Sustainability, MDPI, vol. 15(14), pages 1-23, July.
    4. Salvia, Amanda Lange & Brandli, Luciana Londero & Leal Filho, Walter & Locatelli Kalil, Rosa Maria, 2019. "An analysis of the applications of Analytic Hierarchy Process (AHP) for selection of energy efficiency practices in public lighting in a sample of Brazilian cities," Energy Policy, Elsevier, vol. 132(C), pages 854-864.
    5. Comodi, Gabriele & Cioccolanti, Luca & Polonara, Fabio & Brandoni, Caterina, 2012. "Local authorities in the context of energy and climate policy," Energy Policy, Elsevier, vol. 51(C), pages 737-748.
    6. Lucia Cellucci & Chiara Burattini & Dionysia Drakou & Franco Gugliermetti & Fabio Bisegna & Andrea De Lieto Vollaro & Ferdinando Salata & Iacopo Golasi, 2015. "Urban Lighting Project for a Small Town: Comparing Citizens and Authority Benefits," Sustainability, MDPI, vol. 7(10), pages 1-15, October.
    7. Roman Sikora & Przemysław Markiewicz & Wiesława Pabjańczyk, 2018. "Computing Active Power Losses Using a Mathematical Model of a Regulated Street Luminaire," Energies, MDPI, vol. 11(6), pages 1-16, May.
    8. Rami David Orejon-Sanchez & Jose Ramon Andres-Diaz & Alfonso Gago-Calderon, 2021. "Autonomous Photovoltaic LED Urban Street Lighting: Technical, Economic, and Social Viability Analysis Based on a Case Study," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
    9. Dusan Gordic & Vladimir Vukasinovic & Zoran Kovacevic & Mladen Josijevic & Dubravka Zivkovic, 2021. "Assessing the Techno-Economic Effects of Replacing Energy-Inefficient Street Lighting with LED Corn Bulbs," Energies, MDPI, vol. 14(13), pages 1-16, June.
    10. Theodor Terrich & Marek Balsky, 2022. "The Effect of Spill Light on Street Lighting Energy Efficiency and Light Pollution," Sustainability, MDPI, vol. 14(9), pages 1-10, April.
    11. Roman Sikora & Przemysław Markiewicz, 2020. "Assessment of Colorimetric Parameters for HPS Lamp with Electromagnetic Control Gear and Electronic Ballast," Energies, MDPI, vol. 13(11), pages 1-21, June.
    12. Djuretic, Andrej & Kostic, Miomir, 2018. "Actual energy savings when replacing high-pressure sodium with LED luminaires in street lighting," Energy, Elsevier, vol. 157(C), pages 367-378.
    13. Ovidio Rabaza & Evaristo Molero-Mesa & Fernando Aznar-Dols & Daniel Gómez-Lorente, 2018. "Experimental Study of the Levels of Street Lighting Using Aerial Imagery and Energy Efficiency Calculation," Sustainability, MDPI, vol. 10(12), pages 1-16, November.
    14. Davidovic, M. & Kostic, M., 2022. "Comparison of energy efficiency and costs related to conventional and LED road lighting installations," Energy, Elsevier, vol. 254(PB).
    15. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.
    16. Pablo-Romero, María del P. & Pozo-Barajas, Rafael & Sánchez-Braza, Antonio, 2016. "Analyzing the effects of Energy Action Plans on electricity consumption in Covenant of Mayors signatory municipalities in Andalusia," Energy Policy, Elsevier, vol. 99(C), pages 12-26.
    17. Roman Sikora & Przemysław Markiewicz & Wiesława Pabjańczyk, 2018. "The Active Power Losses in the Road Lighting Installation with Dimmable LED Luminaires," Sustainability, MDPI, vol. 10(12), pages 1-25, December.
    18. Hermoso Orzáez, Manuel Jesús & de Andrés Díaz, José Ramón, 2013. "Comparative study of energy-efficiency and conservation systems for ceramic metal-halide discharge lamps," Energy, Elsevier, vol. 52(C), pages 258-264.
    19. Tallal Ahmed & Waqas Khalid & Adeela Aslam, 2022. "Energy conservation potential in highway illumination system: A Techno-Enviro-Economic study on retrofitting HPS with LED luminaires," Energy & Environment, , vol. 33(3), pages 599-613, May.
    20. Carla Balocco & Giulia Volante, 2018. "Lighting Design for Energy Sustainability, Information, and Perception. A Museum Environment as a Case Study," Sustainability, MDPI, vol. 10(5), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:138:y:2017:i:c:p:616-628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.