IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i12p4365-d184966.html
   My bibliography  Save this article

Experimental Study of the Levels of Street Lighting Using Aerial Imagery and Energy Efficiency Calculation

Author

Listed:
  • Ovidio Rabaza

    (Department of Civil Engineering, University of Granada, 18071 Granada, Spain)

  • Evaristo Molero-Mesa

    (Department of Civil Engineering, University of Granada, 18071 Granada, Spain)

  • Fernando Aznar-Dols

    (Department of Civil Engineering, University of Granada, 18071 Granada, Spain)

  • Daniel Gómez-Lorente

    (Department of Civil Engineering, University of Granada, 18071 Granada, Spain)

Abstract

This article describes an innovative method for measuring lighting levels and other lighting parameters through the use of aerial imagery of towns and cities. Combined with electricity consumption data from smart electricity meters, it was possible to measure the energy efficiency of public lighting installations. The results of this study also confirmed that lighting measurements, installation material, luminaire position, and electricity consumption data can be easily integrated into geographic information systems (GIS). The main advantage of this new methodology is that it provides information about lighting installations in large areas in less time than more conventional procedures. It is thus a more effective way of obtaining the data required to calculate the energy efficiency of lighting levels and electricity consumption. There is even the possibility of generating street lighting maps that provide local administrations with up-to-date information regarding the status of public lighting installations in their city. In this way, modifications or improvements can be made to achieve greater energy savings and, if necessary, to correct the distribution or configuration of public lighting systems to make them more efficient and sustainable. This research studied levels of street lighting and calculated the energy efficiency in various streets of Deifontes (Granada), through the use of aerial imagery.

Suggested Citation

  • Ovidio Rabaza & Evaristo Molero-Mesa & Fernando Aznar-Dols & Daniel Gómez-Lorente, 2018. "Experimental Study of the Levels of Street Lighting Using Aerial Imagery and Energy Efficiency Calculation," Sustainability, MDPI, vol. 10(12), pages 1-16, November.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4365-:d:184966
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/12/4365/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/12/4365/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kostic, Miomir & Djokic, Lidija, 2009. "Recommendations for energy efficient and visually acceptable street lighting," Energy, Elsevier, vol. 34(10), pages 1565-1572.
    2. Rabaza, Ovidio & Gómez-Lorente, Daniel & Pérez-Ocón, Francisco & Peña-García, Antonio, 2016. "A simple and accurate model for the design of public lighting with energy efficiency functions based on regression analysis," Energy, Elsevier, vol. 107(C), pages 831-842.
    3. Beccali, Marco & Bonomolo, Marina & Ciulla, Giuseppina & Galatioto, Alessandra & Lo Brano, Valerio, 2015. "Improvement of energy efficiency and quality of street lighting in South Italy as an action of Sustainable Energy Action Plans. The case study of Comiso (RG)," Energy, Elsevier, vol. 92(P3), pages 394-408.
    4. Sperber, Allison N. & Elmore, Andrew Curtis & Crow, Mariesa L. & Cawlfield, Jeffrey D., 2012. "Performance evaluation of energy efficient lighting associated with renewable energy applications," Renewable Energy, Elsevier, vol. 44(C), pages 423-430.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Theodor Terrich & Marek Balsky, 2022. "The Effect of Spill Light on Street Lighting Energy Efficiency and Light Pollution," Sustainability, MDPI, vol. 14(9), pages 1-10, April.
    2. Katarzyna Bobkowska & Pawel Burdziakowski & Jakub Szulwic & Karolina M. Zielinska-Dabkowska, 2021. "Seven Different Lighting Conditions in Photogrammetric Studies of a 3D Urban Mock-Up," Energies, MDPI, vol. 14(23), pages 1-27, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salvia, Amanda Lange & Brandli, Luciana Londero & Leal Filho, Walter & Locatelli Kalil, Rosa Maria, 2019. "An analysis of the applications of Analytic Hierarchy Process (AHP) for selection of energy efficiency practices in public lighting in a sample of Brazilian cities," Energy Policy, Elsevier, vol. 132(C), pages 854-864.
    2. Leccese, Francesco & Salvadori, Giacomo & Rocca, Michele, 2017. "Critical analysis of the energy performance indicators for road lighting systems in historical towns of central Italy," Energy, Elsevier, vol. 138(C), pages 616-628.
    3. Beccali, M. & Bonomolo, M. & Leccese, F. & Lista, D. & Salvadori, G., 2018. "On the impact of safety requirements, energy prices and investment costs in street lighting refurbishment design," Energy, Elsevier, vol. 165(PB), pages 739-759.
    4. Antonio Peña-García & Ferdinando Salata, 2020. "The Perspective of Total Lighting as a Key Factor to Increase the Sustainability of Strategic Activities," Sustainability, MDPI, vol. 12(7), pages 1-8, April.
    5. Lingyan Zhang & Shan Huang & Yunchen Zhu & Chen Hua & Mingjun Cheng & Song Yao & Yonghua Li, 2023. "Supply and Demand for Planning and Construction of Nighttime Urban Lighting: A Comparative Case Study of Binjiang District, Hangzhou," Sustainability, MDPI, vol. 15(14), pages 1-23, July.
    6. Sadeghian, Omid & Mohammadi-Ivatloo, Behnam & Oshnoei, Arman & Aghaei, Jamshid, 2024. "Unveiling the potential of renewable energy and battery utilization in real-world public lighting systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    7. Theodor Terrich & Marek Balsky, 2022. "The Effect of Spill Light on Street Lighting Energy Efficiency and Light Pollution," Sustainability, MDPI, vol. 14(9), pages 1-10, April.
    8. Roman Sikora & Przemysław Markiewicz, 2020. "Assessment of Colorimetric Parameters for HPS Lamp with Electromagnetic Control Gear and Electronic Ballast," Energies, MDPI, vol. 13(11), pages 1-21, June.
    9. Djuretic, Andrej & Kostic, Miomir, 2018. "Actual energy savings when replacing high-pressure sodium with LED luminaires in street lighting," Energy, Elsevier, vol. 157(C), pages 367-378.
    10. Davidovic, M. & Kostic, M., 2022. "Comparison of energy efficiency and costs related to conventional and LED road lighting installations," Energy, Elsevier, vol. 254(PB).
    11. Lodovica Valetti & Francesca Floris & Anna Pellegrino, 2021. "Renovation of Public Lighting Systems in Cultural Landscapes: Lighting and Energy Performance and Their Impact on Nightscapes," Energies, MDPI, vol. 14(2), pages 1-25, January.
    12. Adam Sȩdziwy & Leszek Kotulski, 2016. "Towards Highly Energy-Efficient Roadway Lighting," Energies, MDPI, vol. 9(4), pages 1-16, April.
    13. Lucia Cellucci & Chiara Burattini & Dionysia Drakou & Franco Gugliermetti & Fabio Bisegna & Andrea De Lieto Vollaro & Ferdinando Salata & Iacopo Golasi, 2015. "Urban Lighting Project for a Small Town: Comparing Citizens and Authority Benefits," Sustainability, MDPI, vol. 7(10), pages 1-15, October.
    14. Radulovic, Dusko & Skok, Srdjan & Kirincic, Vedran, 2011. "Energy efficiency public lighting management in the cities," Energy, Elsevier, vol. 36(4), pages 1908-1915.
    15. Roman Sikora & Przemysław Markiewicz & Wiesława Pabjańczyk, 2018. "Computing Active Power Losses Using a Mathematical Model of a Regulated Street Luminaire," Energies, MDPI, vol. 11(6), pages 1-16, May.
    16. Ivana Rakonjac & Ana Zorić & Ivan Rakonjac & Jelena Milošević & Jelena Marić & Danilo Furundžić, 2022. "Increasing the Livability of Open Public Spaces during Nighttime: The Importance of Lighting in Waterfront Areas," Sustainability, MDPI, vol. 14(10), pages 1-25, May.
    17. Rami David Orejon-Sanchez & Jose Ramon Andres-Diaz & Alfonso Gago-Calderon, 2021. "Autonomous Photovoltaic LED Urban Street Lighting: Technical, Economic, and Social Viability Analysis Based on a Case Study," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
    18. Manuel Jesús Hermoso-Orzáez & Alfonso Gago-Calderón & José Ignacio Rojas-Sola, 2017. "Power Quality and Energy Efficiency in the Pre-Evaluation of an Outdoor Lighting Renewal with Light-Emitting Diode Technology: Experimental Study and Amortization Analysis," Energies, MDPI, vol. 10(7), pages 1-13, June.
    19. Jones, Benjamin A., 2018. "Measuring externalities of energy efficiency investments using subjective well-being data: The case of LED streetlights," Resource and Energy Economics, Elsevier, vol. 52(C), pages 18-32.
    20. Enrique Navarrete-de Galvez & Alfonso Gago-Calderon & Luz Garcia-Ceballos & Miguel Angel Contreras-Lopez & Jose Ramon Andres-Diaz, 2021. "Adjustment of Lighting Parameters from Photopic to Mesopic Values in Outdoor Lighting Installations Strategy and Associated Evaluation of Variation in Energy Needs," Sustainability, MDPI, vol. 13(8), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4365-:d:184966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.