IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v33y2022i3p599-613.html
   My bibliography  Save this article

Energy conservation potential in highway illumination system: A Techno-Enviro-Economic study on retrofitting HPS with LED luminaires

Author

Listed:
  • Tallal Ahmed
  • Waqas Khalid
  • Adeela Aslam

Abstract

Adequate and appropriate illumination across the highway isessential for safety. High-pressure sodium luminaires (HPS) are usually standard throughout Pakistan. However, with the advancements in illumination technologies and growing trend of energy efficiency, retrofitting of conventional HPS luminaires with light-emitting diode luminaires (LEDs) is becoming popular. Low energy consumption, high color rendering index (CRI), longer life span, and variety in correlated color temperature (CCT) make LED luminaires ideal for replacing inefficient HPS lights. The retrofitting of HPS with LED illumination system comes with a capital cost, and its feasibility depends on the energy conservation potential. This study presents a case of 4,014 HPS luminaires installed across an 85 km long highway in second highly populated city of Pakistan. A targeted energy audit of HPS illumination system was conducted and compared with the proposed LED system of equivalent illumination quality. The results indicate that by retrofitting the HPS luminaires, the energy consumption can be reduced by 60% and with 83.3% reduction in the apparent power. Furthermore, the proposed LED illumination system will significantly improve the power quality, light noise, energy losses, carbon footprint, and operational cost.

Suggested Citation

  • Tallal Ahmed & Waqas Khalid & Adeela Aslam, 2022. "Energy conservation potential in highway illumination system: A Techno-Enviro-Economic study on retrofitting HPS with LED luminaires," Energy & Environment, , vol. 33(3), pages 599-613, May.
  • Handle: RePEc:sae:engenv:v:33:y:2022:i:3:p:599-613
    DOI: 10.1177/0958305X211020477
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X211020477
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X211020477?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kostic, Miomir & Djokic, Lidija, 2009. "Recommendations for energy efficient and visually acceptable street lighting," Energy, Elsevier, vol. 34(10), pages 1565-1572.
    2. Radulovic, Dusko & Skok, Srdjan & Kirincic, Vedran, 2011. "Energy efficiency public lighting management in the cities," Energy, Elsevier, vol. 36(4), pages 1908-1915.
    3. Djuretic, Andrej & Kostic, Miomir, 2018. "Actual energy savings when replacing high-pressure sodium with LED luminaires in street lighting," Energy, Elsevier, vol. 157(C), pages 367-378.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beccali, M. & Bonomolo, M. & Leccese, F. & Lista, D. & Salvadori, G., 2018. "On the impact of safety requirements, energy prices and investment costs in street lighting refurbishment design," Energy, Elsevier, vol. 165(PB), pages 739-759.
    2. Salvia, Amanda Lange & Brandli, Luciana Londero & Leal Filho, Walter & Locatelli Kalil, Rosa Maria, 2019. "An analysis of the applications of Analytic Hierarchy Process (AHP) for selection of energy efficiency practices in public lighting in a sample of Brazilian cities," Energy Policy, Elsevier, vol. 132(C), pages 854-864.
    3. Lodovica Valetti & Francesca Floris & Anna Pellegrino, 2021. "Renovation of Public Lighting Systems in Cultural Landscapes: Lighting and Energy Performance and Their Impact on Nightscapes," Energies, MDPI, vol. 14(2), pages 1-25, January.
    4. Leccese, Francesco & Salvadori, Giacomo & Rocca, Michele, 2017. "Critical analysis of the energy performance indicators for road lighting systems in historical towns of central Italy," Energy, Elsevier, vol. 138(C), pages 616-628.
    5. Lucia Cellucci & Chiara Burattini & Dionysia Drakou & Franco Gugliermetti & Fabio Bisegna & Andrea De Lieto Vollaro & Ferdinando Salata & Iacopo Golasi, 2015. "Urban Lighting Project for a Small Town: Comparing Citizens and Authority Benefits," Sustainability, MDPI, vol. 7(10), pages 1-15, October.
    6. Dusan Gordic & Vladimir Vukasinovic & Zoran Kovacevic & Mladen Josijevic & Dubravka Zivkovic, 2021. "Assessing the Techno-Economic Effects of Replacing Energy-Inefficient Street Lighting with LED Corn Bulbs," Energies, MDPI, vol. 14(13), pages 1-16, June.
    7. Hermoso Orzáez, Manuel Jesús & de Andrés Díaz, José Ramón, 2013. "Comparative study of energy-efficiency and conservation systems for ceramic metal-halide discharge lamps," Energy, Elsevier, vol. 52(C), pages 258-264.
    8. Comodi, Gabriele & Cioccolanti, Luca & Polonara, Fabio & Brandoni, Caterina, 2012. "Local authorities in the context of energy and climate policy," Energy Policy, Elsevier, vol. 51(C), pages 737-748.
    9. Roman Sikora & Przemysław Markiewicz & Wiesława Pabjańczyk, 2018. "Computing Active Power Losses Using a Mathematical Model of a Regulated Street Luminaire," Energies, MDPI, vol. 11(6), pages 1-16, May.
    10. Chiatti, Chiara & Fabiani, Claudia & Pisello, Anna Laura, 2023. "Toward the energy optimization of smart lighting systems through the luminous potential of photoluminescence," Energy, Elsevier, vol. 266(C).
    11. Lingyan Zhang & Shan Huang & Yunchen Zhu & Chen Hua & Mingjun Cheng & Song Yao & Yonghua Li, 2023. "Supply and Demand for Planning and Construction of Nighttime Urban Lighting: A Comparative Case Study of Binjiang District, Hangzhou," Sustainability, MDPI, vol. 15(14), pages 1-23, July.
    12. Roman Sikora & Przemysław Markiewicz, 2020. "Assessment of Colorimetric Parameters for HPS Lamp with Electromagnetic Control Gear and Electronic Ballast," Energies, MDPI, vol. 13(11), pages 1-21, June.
    13. Davidovic, M. & Kostic, M., 2022. "Comparison of energy efficiency and costs related to conventional and LED road lighting installations," Energy, Elsevier, vol. 254(PB).
    14. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.
    15. Roman Sikora & Przemysław Markiewicz & Wiesława Pabjańczyk, 2018. "The Active Power Losses in the Road Lighting Installation with Dimmable LED Luminaires," Sustainability, MDPI, vol. 10(12), pages 1-25, December.
    16. Beccali, Marco & Bonomolo, Marina & Ciulla, Giuseppina & Galatioto, Alessandra & Lo Brano, Valerio, 2015. "Improvement of energy efficiency and quality of street lighting in South Italy as an action of Sustainable Energy Action Plans. The case study of Comiso (RG)," Energy, Elsevier, vol. 92(P3), pages 394-408.
    17. Ramadhani, Farah & Bakar, Kamalrulnizam Abu & Hussain, M.A. & Erixno, Oon & Nazir, Refdinal, 2017. "Optimization with traffic-based control for designing standalone streetlight system: A case study," Renewable Energy, Elsevier, vol. 105(C), pages 149-159.
    18. Carlos Velásquez & Francisco Espín & María Ángeles Castro & Francisco Rodríguez, 2024. "Energy Efficiency in Public Lighting Systems Friendly to the Environment and Protected Areas," Sustainability, MDPI, vol. 16(12), pages 1-15, June.
    19. Rami David Orejon-Sanchez & Jose Ramon Andres-Diaz & Alfonso Gago-Calderon, 2021. "Autonomous Photovoltaic LED Urban Street Lighting: Technical, Economic, and Social Viability Analysis Based on a Case Study," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
    20. Mirzaei, Mohammad Javad & Dashti, Reza & Kazemi, Ahad & Amirioun, Mohammad Hassan, 2015. "An asset-management model for use in the evaluation and regulation of public-lighting systems," Utilities Policy, Elsevier, vol. 32(C), pages 19-28.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:33:y:2022:i:3:p:599-613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.