IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v136y2017icp126-134.html
   My bibliography  Save this article

Design and optimization of baffled fluid distributor for realizing target flow distribution in a tubular solar receiver

Author

Listed:
  • Wei, Min
  • Fan, Yilin
  • Luo, Lingai
  • Flamant, Gilles

Abstract

This paper presents an original study on the design and optimization of baffled fluid distributor for the realization of optimal fluid flow distribution in a tubular solar receiver. The basic idea is to install a perforated baffle in the inlet fluid distributor and to optimize the configuration of orifices on the baffle so as to approach the target flow distribution among downstream parallel tubes. A pressurized-air solar receiver comprising of 45 parallel tubes is used for study, with copper or Inconel 600 used as the filling material.

Suggested Citation

  • Wei, Min & Fan, Yilin & Luo, Lingai & Flamant, Gilles, 2017. "Design and optimization of baffled fluid distributor for realizing target flow distribution in a tubular solar receiver," Energy, Elsevier, vol. 136(C), pages 126-134.
  • Handle: RePEc:eee:energy:v:136:y:2017:i:c:p:126-134
    DOI: 10.1016/j.energy.2016.04.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216304145
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.04.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Danielewicz, J. & Sayegh, M.A. & Śniechowska, B. & Szulgowska-Zgrzywa, M. & Jouhara, H., 2014. "Experimental and analytical performance investigation of air to air two phase closed thermosyphon based heat exchangers," Energy, Elsevier, vol. 77(C), pages 82-87.
    2. Karwa, Rajendra & Karwa, Nitin & Misra, Rohit & Agarwal, P.C., 2007. "Effect of flow maldistribution on thermal performance of a solar air heater array with subcollectors in parallel," Energy, Elsevier, vol. 32(7), pages 1260-1270.
    3. Wei, Min & Fan, Yilin & Luo, Lingai & Flamant, Gilles, 2015. "Fluid flow distribution optimization for minimizing the peak temperature of a tubular solar receiver," Energy, Elsevier, vol. 91(C), pages 663-677.
    4. Guo, Xiaofeng & Fan, Yilin & Luo, Lingai, 2014. "Multi-channel heat exchanger-reactor using arborescent distributors: A characterization study of fluid distribution, heat exchange performance and exothermic reaction," Energy, Elsevier, vol. 69(C), pages 728-741.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dabiri, Soroush & Hashemi, Mohammadreza & Rahimi, Mohammadfazel & Bahiraei, Mehdi & Khodabandeh, Erfan, 2018. "Design of an innovative distributor to improve flow uniformity using cylindrical obstacles in header of a fuel cell," Energy, Elsevier, vol. 152(C), pages 719-731.
    2. Dominika Babička Fialová & Zdeněk Jegla, 2021. "Experimentally Verified Flow Distribution Model for a Composite Modelling System," Energies, MDPI, vol. 14(6), pages 1-24, March.
    3. Vishal Dabra & Avadhesh Yadav, 2022. "To optimize the flow distribution in concentric glass tube solar air collector with various configuration of manifolds," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 10902-10923, September.
    4. Aichmayer, Lukas & Garrido, Jorge & Laumert, Björn, 2020. "Thermo-mechanical solar receiver design and validation for a micro gas-turbine based solar dish system," Energy, Elsevier, vol. 196(C).
    5. Li, Jieyang & Hu, Jinpeng & Lin, Meng, 2022. "A flexibly controllable high-flux solar simulator for concentrated solar energy research from extreme magnitudes to uniform distributions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jouhara, Hussam & Meskimmon, Richard, 2014. "Heat pipe based thermal management systems for energy-efficient data centres," Energy, Elsevier, vol. 77(C), pages 265-270.
    2. Jouhara, H. & Nannou, T.K. & Anguilano, L. & Ghazal, H. & Spencer, N., 2017. "Heat pipe based municipal waste treatment unit for home energy recovery," Energy, Elsevier, vol. 139(C), pages 1210-1230.
    3. Wei, Min & Fan, Yilin & Luo, Lingai & Flamant, Gilles, 2015. "Fluid flow distribution optimization for minimizing the peak temperature of a tubular solar receiver," Energy, Elsevier, vol. 91(C), pages 663-677.
    4. Daabo, Ahmed M. & Mahmoud, Saad & Al-Dadah, Raya K. & Ahmad, Abdalqader, 2017. "Numerical investigation of pitch value on thermal performance of solar receiver for solar powered Brayton cycle application," Energy, Elsevier, vol. 119(C), pages 523-539.
    5. Siddiqui, Osman K. & Zubair, Syed M., 2017. "Efficient energy utilization through proper design of microchannel heat exchanger manifolds: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 969-1002.
    6. Jouhara, H. & Milko, J. & Danielewicz, J. & Sayegh, M.A. & Szulgowska-Zgrzywa, M. & Ramos, J.B. & Lester, S.P., 2016. "The performance of a novel flat heat pipe based thermal and PV/T (photovoltaic and thermal systems) solar collector that can be used as an energy-active building envelope material," Energy, Elsevier, vol. 108(C), pages 148-154.
    7. Oztop, Hakan F. & Bayrak, Fatih & Hepbasli, Arif, 2013. "Energetic and exergetic aspects of solar air heating (solar collector) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 59-83.
    8. Delpech, Bertrand & Milani, Massimo & Montorsi, Luca & Boscardin, Davide & Chauhan, Amisha & Almahmoud, Sulaiman & Axcell, Brian & Jouhara, Hussam, 2018. "Energy efficiency enhancement and waste heat recovery in industrial processes by means of the heat pipe technology: Case of the ceramic industry," Energy, Elsevier, vol. 158(C), pages 656-665.
    9. Zhang, L.Y. & Liu, Y.Y. & Guo, X. & Meng, X.Z. & Jin, L.W. & Zhang, Q.L. & Hu, W.J., 2017. "Experimental investigation and economic analysis of gravity heat pipe exchanger applied in communication base station," Applied Energy, Elsevier, vol. 194(C), pages 499-507.
    10. Gad, Ramadan & Mahmoud, Hatem & Hassan, Hamdy, 2023. "Performance evaluation of direct and indirect thermal regulation of low concentrated (via compound parabolic collector) solar panel using phase change material-flat heat pipe cooling system," Energy, Elsevier, vol. 274(C).
    11. Danielewicz, J. & Śniechowska, B. & Sayegh, M.A. & Fidorów, N. & Jouhara, H., 2016. "Three-dimensional numerical model of heat losses from district heating network pre-insulated pipes buried in the ground," Energy, Elsevier, vol. 108(C), pages 172-184.
    12. Jouhara, Hussam & Nieto, Nerea & Egilegor, Bakartxo & Zuazua, Josu & González, Eva & Yebra, Ignacio & Igesias, Alfredo & Delpech, Bertrand & Almahmoud, Sulaiman & Brough, Daniel & Malinauskaite, Jurgi, 2023. "Waste heat recovery solution based on a heat pipe heat exchanger for the aluminium die casting industry," Energy, Elsevier, vol. 266(C).
    13. Luis Olmos-Villalba & Bernardo Herrera & Anderson Gallego & Karen Cacua, 2019. "Experimental Evaluation of a Diesel Cogeneration System for Producing Power and Drying Aromatic Herbs," Sustainability, MDPI, vol. 11(18), pages 1-12, September.
    14. Mroue, H. & Ramos, J.B. & Wrobel, L.C. & Jouhara, H., 2017. "Performance evaluation of a multi-pass air-to-water thermosyphon-based heat exchanger," Energy, Elsevier, vol. 139(C), pages 1243-1260.
    15. Krzysztof Rajski & Ali Sohani & Sina Jafari & Jan Danielewicz & Marderos Ara Sayegh, 2022. "Energy Performance of a Novel Hybrid Air Conditioning System Built on Gravity-Assisted Heat Pipe-Based Indirect Evaporative Cooler," Energies, MDPI, vol. 15(7), pages 1-18, April.
    16. Do, Kyu Hyung & Kim, Taehoon & Han, Yong-Shik & Choi, Byung-Il & Kim, Myungbae, 2017. "Investigation on flow distribution of the fuel supply nozzle in the annular combustor of a micro gas turbine," Energy, Elsevier, vol. 126(C), pages 361-373.
    17. Jafari, Davoud & Wits, Wessel W., 2018. "The utilization of selective laser melting technology on heat transfer devices for thermal energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 420-442.
    18. Singh, Sanjay Kumar & Mishra, Manish & Jha, P.K., 2014. "Nonuniformities in compact heat exchangers—scope for better energy utilization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 583-596.
    19. He, Li & Fan, Yilin & Bellettre, Jérôme & Yue, Jun & Luo, Lingai, 2020. "A review on catalytic methane combustion at low temperatures: Catalysts, mechanisms, reaction conditions and reactor designs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    20. Singh, Satyender & Dhiman, Prashant, 2016. "Thermal performance of double pass packed bed solar air heaters – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1010-1031.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:136:y:2017:i:c:p:126-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.