A flexibly controllable high-flux solar simulator for concentrated solar energy research from extreme magnitudes to uniform distributions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2022.112084
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Li, Jieyang & Lin, Meng, 2021. "Unified design guidelines for high flux solar simulator with controllable flux vector," Applied Energy, Elsevier, vol. 281(C).
- Manuel Romero & José González-Aguilar, 2014. "Solar thermal CSP technology," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(1), pages 42-59, January.
- Wei, Min & Fan, Yilin & Luo, Lingai & Flamant, Gilles, 2015. "Fluid flow distribution optimization for minimizing the peak temperature of a tubular solar receiver," Energy, Elsevier, vol. 91(C), pages 663-677.
- Saurabh Tembhurne & Fredy Nandjou & Sophia Haussener, 2019. "A thermally synergistic photo-electrochemical hydrogen generator operating under concentrated solar irradiation," Nature Energy, Nature, vol. 4(5), pages 399-407, May.
- Zhu, Qibin & Xuan, Yimin & Liu, Xianglei & Yang, Lili & Lian, Wenlei & Zhang, Jin, 2020. "A 130 kWe solar simulator with tunable ultra-high flux and characterization using direct multiple lamps mapping," Applied Energy, Elsevier, vol. 270(C).
- Wei, Min & Fan, Yilin & Luo, Lingai & Flamant, Gilles, 2017. "Design and optimization of baffled fluid distributor for realizing target flow distribution in a tubular solar receiver," Energy, Elsevier, vol. 136(C), pages 126-134.
- Jin, Jian & Hao, Yong & Jin, Hongguang, 2019. "A universal solar simulator for focused and quasi-collimated beams," Applied Energy, Elsevier, vol. 235(C), pages 1266-1276.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liu, Liu & Niu, Jianlei & Wu, Jian-Yong, 2023. "Improving energy efficiency of photovoltaic/thermal systems by cooling with PCM nano-emulsions: An indoor experimental study," Renewable Energy, Elsevier, vol. 203(C), pages 568-582.
- Guo, Yongpeng & Chen, Jing & Song, Hualong & Zheng, Ke & Wang, Jian & Wang, Hongsheng & Kong, Hui, 2024. "A review of solar thermochemical cycles for fuel production," Applied Energy, Elsevier, vol. 357(C).
- Ayala-Cortés, Alejandro & Arcelus-Arrillaga, Pedro & Millan, Marcos & Okoye, Patrick U. & Arancibia-Bulnes, Camilo A. & Pacheco-Catalán, Daniella Esperanza & Villafán-Vidales, Heidi Isabel, 2022. "Solar hydrothermal processing of agave bagasse: Insights on the effect of operational parameters," Renewable Energy, Elsevier, vol. 192(C), pages 14-23.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Jieyang & Lin, Meng, 2021. "Unified design guidelines for high flux solar simulator with controllable flux vector," Applied Energy, Elsevier, vol. 281(C).
- Gao, Yuan & Zhu, Xuan & Chen, Jiangfeng & Xie, Yin & Hong, Jianan & Jin, Junyu & Han, Junchou & Zhang, Xuhan & Xu, Chenyu & Zhang, Yanwei, 2024. "Constructing the large-scale collimating solar simulator with a light half-divergence angle <1° using only collimating radiation modules," Renewable Energy, Elsevier, vol. 221(C).
- Guo, Yongpeng & Chen, Jing & Song, Hualong & Zheng, Ke & Wang, Jian & Wang, Hongsheng & Kong, Hui, 2024. "A review of solar thermochemical cycles for fuel production," Applied Energy, Elsevier, vol. 357(C).
- Li, Qing & Wang, Jikang & Qiu, Yu & Xu, Mingpan & Wei, Xiudong, 2021. "A modified indirect flux mapping system for high-flux solar simulators," Energy, Elsevier, vol. 235(C).
- Gonçalo Domingos & José Carlos Garcia Pereira & Pedro Alexandre Rodrigues Rosa & José Rodríguez & Luís Guerra Rosa, 2023. "Experimental Validation of Double Paraboloid Reflection for Obtaining Quasi-Homogeneous Distribution of Concentrated Solar Flux," Energies, MDPI, vol. 16(9), pages 1-13, May.
- Isaac Holmes-Gentle & Saurabh Tembhurne & Clemens Suter & Sophia Haussener, 2023. "Kilowatt-scale solar hydrogen production system using a concentrated integrated photoelectrochemical device," Nature Energy, Nature, vol. 8(6), pages 586-596, June.
- Zaversky, Fritz & Les, Iñigo & Sorbet, Patxi & Sánchez, Marcelino & Valentin, Benoît & Brau, Jean-Florian & Siros, Frédéric, 2020. "The challenge of solar powered combined cycles – Providing dispatchability and increasing efficiency by integrating the open volumetric air receiver technology," Energy, Elsevier, vol. 194(C).
- Zhu, Qibin & Xuan, Yimin & Liu, Xianglei & Yang, Lili & Lian, Wenlei & Zhang, Jin, 2020. "A 130 kWe solar simulator with tunable ultra-high flux and characterization using direct multiple lamps mapping," Applied Energy, Elsevier, vol. 270(C).
- Daabo, Ahmed M. & Mahmoud, Saad & Al-Dadah, Raya K. & Ahmad, Abdalqader, 2017. "Numerical investigation of pitch value on thermal performance of solar receiver for solar powered Brayton cycle application," Energy, Elsevier, vol. 119(C), pages 523-539.
- Martínez-Merino, Paloma & Alcántara, Rodrigo & Gómez-Larrán, Pedro & Carrillo-Berdugo, Iván & Navas, Javier, 2022. "MoS2-based nanofluids as heat transfer fluid in parabolic trough collector technology," Renewable Energy, Elsevier, vol. 188(C), pages 721-730.
- Calderón, Alejandro & Palacios, Anabel & Barreneche, Camila & Segarra, Mercè & Prieto, Cristina & Rodriguez-Sanchez, Alfonso & Fernández, A. Inés, 2018. "High temperature systems using solid particles as TES and HTF material: A review," Applied Energy, Elsevier, vol. 213(C), pages 100-111.
- Zhang, Li & Fang, Jiabin & Wei, Jinjia & Yang, Guidong, 2017. "Numerical investigation on the thermal performance of molten salt cavity receivers with different structures," Applied Energy, Elsevier, vol. 204(C), pages 966-978.
- Gabriel Zsembinszki & Aran Solé & Camila Barreneche & Cristina Prieto & A. Inés Fernández & Luisa F. Cabeza, 2018. "Review of Reactors with Potential Use in Thermochemical Energy Storage in Concentrated Solar Power Plants," Energies, MDPI, vol. 11(9), pages 1-23, September.
- Hong, Jeongsoo & Suzuki, Norihiro & Nakata, Kazuya & Terashima, Chiaki & Kim, Kyunghwan & Fujishima, Akira & Katsumata, Ken-ichi, 2021. "Hydrogen production using iron oxyhydroxide with light irradiation," Renewable Energy, Elsevier, vol. 164(C), pages 1284-1289.
- Dan, Atasi & Barshilia, Harish C. & Chattopadhyay, Kamanio & Basu, Bikramjit, 2017. "Solar energy absorption mediated by surface plasma polaritons in spectrally selective dielectric-metal-dielectric coatings: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1050-1077.
- Sonya Calnan & Stefan Aschbrenner & Fuxi Bao & Erno Kemppainen & Iris Dorbandt & Rutger Schlatmann, 2019. "Prospects for Hermetic Sealing of Scaled-Up Photoelectrochemical Hydrogen Generators for Reliable and Risk Free Operation," Energies, MDPI, vol. 12(21), pages 1-29, November.
- Hou, Qinlong & Zhao, Hongbin & Yang, Xiaoyu, 2018. "Thermodynamic performance study of the integrated MR-SOFC-CCHP system," Energy, Elsevier, vol. 150(C), pages 434-450.
- Marco Milanese & Gianpiero Colangelo & Arturo de Risi, 2021. "Development of a High-Flux Solar Simulator for Experimental Testing of High-Temperature Applications," Energies, MDPI, vol. 14(11), pages 1-18, May.
- Sudhagar Pitchaimuthu & Kishore Sridharan & Sanjay Nagarajan & Sengeni Ananthraj & Peter Robertson & Moritz F. Kuehnel & Ángel Irabien & Mercedes Maroto-Valer, 2022. "Solar Hydrogen Fuel Generation from Wastewater—Beyond Photoelectrochemical Water Splitting: A Perspective," Energies, MDPI, vol. 15(19), pages 1-23, October.
- José M. Cardemil & Allan R. Starke & Adriana Zurita & Carlos Mata‐Torres & Rodrigo Escobar, 2021. "Integration schemes for hybrid and polygeneration concentrated solar power plants," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(6), November.
More about this item
Keywords
High-flux solar simulator; Homogenizer; Characterization; Concentrated solar energy; Uniformity;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:157:y:2022:i:c:s1364032122000144. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.