IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v74y2017icp969-1002.html
   My bibliography  Save this article

Efficient energy utilization through proper design of microchannel heat exchanger manifolds: A comprehensive review

Author

Listed:
  • Siddiqui, Osman K.
  • Zubair, Syed M.

Abstract

The presence of non-uniformities in the channels of a heat exchanger due to poor design of manifold and channel parameters has been the focus of the present paper. Unequal flow distribution results in an increased flow resistance leading to increased pumping power. It also leads to an imbalance of thermal characteristics due to the different mass flow rate in individual channels. The influence of manifold design, channel design, the location of inlet and outlet connections to the heat exchanger along with the use of secondary header has been discussed for both single and two-phase flow. The current achievements in the analytical modeling of such flow distributing manifolds have also been discussed supporting the numerical and experimental literature. In general, larger manifold area and a longer channel length are found to be resulting in better flow distribution. The use of secondary header results in higher pressure loss but this loss is offset by the increased flow uniformity. Two-phase flow behavior in distributing manifold is experimentally determined to be slug flow as a dominating behavior with occasional reverse flow. These non-uniformities must be taken into consideration for the proper design of heat exchangers, thus improving the performance of thermal systems.

Suggested Citation

  • Siddiqui, Osman K. & Zubair, Syed M., 2017. "Efficient energy utilization through proper design of microchannel heat exchanger manifolds: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 969-1002.
  • Handle: RePEc:eee:rensus:v:74:y:2017:i:c:p:969-1002
    DOI: 10.1016/j.rser.2017.01.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117300849
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.01.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdel-Salam, Mohamed R.H. & Ge, Gaoming & Fauchoux, Melanie & Besant, Robert W. & Simonson, Carey J., 2014. "State-of-the-art in liquid-to-air membrane energy exchangers (LAMEEs): A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 700-728.
    2. Karwa, Rajendra & Karwa, Nitin & Misra, Rohit & Agarwal, P.C., 2007. "Effect of flow maldistribution on thermal performance of a solar air heater array with subcollectors in parallel," Energy, Elsevier, vol. 32(7), pages 1260-1270.
    3. Amin, Nowshad & Lung, Chin Wen & Sopian, Kamaruzzaman, 2009. "A practical field study of various solar cells on their performance in Malaysia," Renewable Energy, Elsevier, vol. 34(8), pages 1939-1946.
    4. Mohammad, Abdulrahman Th. & Bin Mat, Sohif & Sulaiman, M.Y. & Sopian, K. & Al-abidi, Abduljalil A., 2013. "Survey of hybrid liquid desiccant air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 186-200.
    5. Shenyi Wu & Chenguang Xiong, 2014. "Passive cooling technology for photovoltaic panels for domestic houses," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 9(2), pages 118-126.
    6. Radziemska, E., 2003. "The effect of temperature on the power drop in crystalline silicon solar cells," Renewable Energy, Elsevier, vol. 28(1), pages 1-12.
    7. Tiwari, G.N. & Mishra, R.K. & Solanki, S.C., 2011. "Photovoltaic modules and their applications: A review on thermal modelling," Applied Energy, Elsevier, vol. 88(7), pages 2287-2304, July.
    8. Bahaidarah, Haitham M.S. & Baloch, Ahmer A.B. & Gandhidasan, Palanichamy, 2016. "Uniform cooling of photovoltaic panels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1520-1544.
    9. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    10. Zeng, Dehuai & Pan, Minqiang & Tang, Yong, 2012. "Qualitative investigation on effects of manifold shape on methanol steam reforming for hydrogen production," Renewable Energy, Elsevier, vol. 39(1), pages 313-322.
    11. Bahaidarah, H. & Subhan, Abdul & Gandhidasan, P. & Rehman, S., 2013. "Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions," Energy, Elsevier, vol. 59(C), pages 445-453.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gilmore, Nicholas & Timchenko, Victoria & Menictas, Chris, 2018. "Microchannel cooling of concentrator photovoltaics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1041-1059.
    2. Wanruo Lou & Lingai Luo & Yuchao Hua & Yilin Fan & Zhenyu Du, 2021. "A Review on the Performance Indicators and Influencing Factors for the Thermocline Thermal Energy Storage Systems," Energies, MDPI, vol. 14(24), pages 1-19, December.
    3. Ambreen, Tehmina & Kim, Man-Hoe, 2018. "Heat transfer and pressure drop correlations of nanofluids: A state of art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 564-583.
    4. Marzouk, S.A. & Abou Al-Sood, M.M. & M.S. El-Said, Emad & Younes, M.M. & K. El-Fakharany, Magda, 2023. "Evaluating the effects of bifurcation angle on the performance of a novel heat exchanger based on contractual theory," Renewable Energy, Elsevier, vol. 219(P1).
    5. He, Ziqiang & Yan, Yunfei & Zhang, Zhien, 2021. "Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review," Energy, Elsevier, vol. 216(C).
    6. Xiuli Liu & Hua Chen & Xiaolin Wang & Gholamreza Kefayati, 2020. "Study on Surface Condensate Water Removal and Heat Transfer Performance of a Minichannel Heat Exchanger," Energies, MDPI, vol. 13(5), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bahaidarah, Haitham M.S. & Baloch, Ahmer A.B. & Gandhidasan, Palanichamy, 2016. "Uniform cooling of photovoltaic panels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1520-1544.
    2. Sargunanathan, S. & Elango, A. & Mohideen, S. Tharves, 2016. "Performance enhancement of solar photovoltaic cells using effective cooling methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 382-393.
    3. Hadipour, Amirhosein & Rajabi Zargarabadi, Mehran & Rashidi, Saman, 2021. "An efficient pulsed- spray water cooling system for photovoltaic panels: Experimental study and cost analysis," Renewable Energy, Elsevier, vol. 164(C), pages 867-875.
    4. Hasan, Ahmed & Sarwar, Jawad & Shah, Ali Hasan, 2018. "Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 835-852.
    5. Chandrasekar, M. & Senthilkumar, T., 2015. "Experimental demonstration of enhanced solar energy utilization in flat PV (photovoltaic) modules cooled by heat spreaders in conjunction with cotton wick structures," Energy, Elsevier, vol. 90(P2), pages 1401-1410.
    6. Nadda, Rahul & Kumar, Anil & Maithani, Rajesh, 2018. "Efficiency improvement of solar photovoltaic/solar air collectors by using impingement jets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 331-353.
    7. Jae Woo Ko & Hae Lim Cha & David Kwang-Soon Kim & Jong Rok Lim & Gyu Gwang Kim & Byeong Gwan Bhang & Chang Sub Won & Han Sang Jung & Dong Hyung Kang & Hyung Keun Ahn, 2017. "Safety Analysis of Grounding Resistance with Depth of Water for Floating PVs," Energies, MDPI, vol. 10(9), pages 1-12, September.
    8. Farooq, Abdul Samad & Zhang, Peng & Gao, Yongfeng & Gulfam, Raza, 2021. "Emerging radiative materials and prospective applications of radiative sky cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    9. Li, Guiqiang & Xuan, Qingdong & Pei, Gang & Su, Yuehong & Ji, Jie, 2018. "Effect of non-uniform illumination and temperature distribution on concentrating solar cell - A review," Energy, Elsevier, vol. 144(C), pages 1119-1136.
    10. Hernandez-Perez, J.G. & Carrillo, J.G. & Bassam, A. & Flota-Banuelos, M. & Patino-Lopez, L.D., 2020. "A new passive PV heatsink design to reduce efficiency losses: A computational and experimental evaluation," Renewable Energy, Elsevier, vol. 147(P1), pages 1209-1220.
    11. Nasrin, R. & Rahim, N.A. & Fayaz, H. & Hasanuzzaman, M., 2018. "Water/MWCNT nanofluid based cooling system of PVT: Experimental and numerical research," Renewable Energy, Elsevier, vol. 121(C), pages 286-300.
    12. Samiya Aamir Al-Mabsali & Hassam Nasarullah Chaudhry & Mehreen Saleem Gul, 2019. "Numerical Investigation on Heat Pipe Spanwise Spacing to Determine Optimum Configuration for Passive Cooling of Photovoltaic Panels," Energies, MDPI, vol. 12(24), pages 1-14, December.
    13. Storle, Devin & Abdel-Salam, Mohamed R.H. & Simonson, Carey J., 2019. "Energy performance comparison of a 3-fluid and 2-fluid liquid desiccant membrane air-conditioning systems in an office building," Energy, Elsevier, vol. 176(C), pages 437-456.
    14. Sato, Daisuke & Yamada, Noboru, 2019. "Review of photovoltaic module cooling methods and performance evaluation of the radiative cooling method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 151-166.
    15. Elbreki, A.M. & Alghoul, M.A. & Sopian, K. & Hussein, T., 2017. "Towards adopting passive heat dissipation approaches for temperature regulation of PV module as a sustainable solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 961-1017.
    16. Abbas, Naseem & Awan, Muhammad Bilal & Amer, Mohammed & Ammar, Syed Muhammad & Sajjad, Uzair & Ali, Hafiz Muhammad & Zahra, Nida & Hussain, Muzamil & Badshah, Mohsin Ali & Jafry, Ali Turab, 2019. "Applications of nanofluids in photovoltaic thermal systems: A review of recent advances," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    17. Zapałowicz, Zbigniew & Zeńczak, Wojciech, 2021. "The possibilities to improve ship's energy efficiency through the application of PV installation including cooled modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    18. Gao, Yuanzhi & Hu, Guohao & Zhang, Yuzhuo & Zhang, Xiaosong, 2022. "An experimental study of a hybrid photovoltaic thermal system based on ethanol phase change self-circulation technology: Energy and exergy analysis," Energy, Elsevier, vol. 238(PA).
    19. Nižetić, S. & Grubišić- Čabo, F. & Marinić-Kragić, I. & Papadopoulos, A.M., 2016. "Experimental and numerical investigation of a backside convective cooling mechanism on photovoltaic panels," Energy, Elsevier, vol. 111(C), pages 211-225.
    20. Jan Wajs & Aleksandra Golabek & Roksana Bochniak, 2019. "Photovoltaic Roof Tiles: The Influence of Heat Recovery on Overall Performance," Energies, MDPI, vol. 12(21), pages 1-12, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:74:y:2017:i:c:p:969-1002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.