IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v182y2016icp548-557.html
   My bibliography  Save this article

A predictive power management controller for service vehicle anti-idling systems without a priori information

Author

Listed:
  • Huang, Yanjun
  • Khajepour, Amir
  • Wang, Hong

Abstract

This paper presents a model predictive power management strategy for a novel anti-idling system, regenerative auxiliary power system (RAPS), designed for service vehicles. RAPS is able to utilize recovered braking energy for electrified auxiliary systems; this feature distinguishes it from its counterparts - auxiliary power unit (APU) and auxiliary battery powered unit (ABP). To efficiently operate the RAPS, a power management strategy is required to coordinate power flow between different energy sources. Thus, a model predictive controller (MPC) is developed to improve the overall efficiency of the RAPS. As an optimization-based approach, the MPC-based power management strategy usually requires the drive cycle or the drivers’ command to be known a priori. However, in this study, an average concept based MPC is developed without such knowledge. MPC parameters are tuned over an urban drive cycle; whereas, the robustness of this MPC is tested under different drive cycles (e.g. highway and combined). Analysis shows that, the presented MPC has a comparable performance as the prescient MPC regarding fuel consumption, which assumes knows the drive cycle beforehand. Meanwhile, with the help of the proposed MPC and RAPS, the service vehicle saves up to 9% of the total fuel consumption. The proposed MPC is independent of powertrain topology such that it can be directly extended to other types of hybrid electric vehicles (HEVs), and it provides a way to apply the MPC even though future driving information is unavailable.

Suggested Citation

  • Huang, Yanjun & Khajepour, Amir & Wang, Hong, 2016. "A predictive power management controller for service vehicle anti-idling systems without a priori information," Applied Energy, Elsevier, vol. 182(C), pages 548-557.
  • Handle: RePEc:eee:appene:v:182:y:2016:i:c:p:548-557
    DOI: 10.1016/j.apenergy.2016.08.143
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916312521
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.08.143?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Liang & You, Sixiong & Yang, Chao & Yan, Bingjie & Song, Jian & Chen, Zheng, 2016. "Driving-behavior-aware stochastic model predictive control for plug-in hybrid electric buses," Applied Energy, Elsevier, vol. 162(C), pages 868-879.
    2. Mohammad Ali Karbaschian & Dirk Söffker, 2014. "Review and Comparison of Power Management Approaches for Hybrid Vehicles with Focus on Hydraulic Drives," Energies, MDPI, vol. 7(6), pages 1-25, May.
    3. Pregelj, Boštjan & Vrečko, Darko & Petrovčič, Janko & Jovan, Vladimir & Dolanc, Gregor, 2015. "A model-based approach to battery selection for truck onboard fuel cell-based APU in an anti-idling application," Applied Energy, Elsevier, vol. 137(C), pages 64-76.
    4. Mohagheghi Fard, Soheil & Khajepour, Amir, 2016. "An optimal power management system for a regenerative auxiliary power system for delivery refrigerator trucks," Applied Energy, Elsevier, vol. 169(C), pages 748-756.
    5. Liang, Chen & Ji, Changwei & Liu, Xiaolong, 2011. "Combustion and emissions performance of a DME-enriched spark-ignited methanol engine at idle condition," Applied Energy, Elsevier, vol. 88(11), pages 3704-3711.
    6. Yang, Yalian & Hu, Xiaosong & Pei, Huanxin & Peng, Zhiyuan, 2016. "Comparison of power-split and parallel hybrid powertrain architectures with a single electric machine: Dynamic programming approach," Applied Energy, Elsevier, vol. 168(C), pages 683-690.
    7. Strazza, C. & Del Borghi, A. & Costamagna, P. & Traverso, A. & Santin, M., 2010. "Comparative LCA of methanol-fuelled SOFCs as auxiliary power systems on-board ships," Applied Energy, Elsevier, vol. 87(5), pages 1670-1678, May.
    8. Wang, Hong & Huang, Yanjun & Khajepour, Amir & Song, Qiang, 2016. "Model predictive control-based energy management strategy for a series hybrid electric tracked vehicle," Applied Energy, Elsevier, vol. 182(C), pages 105-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Yanjun & Khajepour, Amir & Ding, Haitao & Bagheri, Farshid & Bahrami, Majid, 2017. "An energy-saving set-point optimizer with a sliding mode controller for automotive air-conditioning/refrigeration systems," Applied Energy, Elsevier, vol. 188(C), pages 576-585.
    2. Huang, Yanjun & Fard, Soheil Mohagheghi & Khazraee, Milad & Wang, Hong & Khajepour, Amir, 2017. "An adaptive model predictive controller for a novel battery-powered anti-idling system of service vehicles," Energy, Elsevier, vol. 127(C), pages 318-327.
    3. Hongwen, He & Jinquan, Guo & Jiankun, Peng & Huachun, Tan & Chao, Sun, 2018. "Real-time global driving cycle construction and the application to economy driving pro system in plug-in hybrid electric vehicles," Energy, Elsevier, vol. 152(C), pages 95-107.
    4. Ahmed M. Ali & Dirk Söffker, 2018. "Towards Optimal Power Management of Hybrid Electric Vehicles in Real-Time: A Review on Methods, Challenges, and State-Of-The-Art Solutions," Energies, MDPI, vol. 11(3), pages 1-24, February.
    5. Fard, Soheil Mohagheghi & Huang, Yanjun & Khazraee, Milad & Khajepour, Amir, 2017. "A novel anti-idling system for service vehicles," Energy, Elsevier, vol. 127(C), pages 650-659.
    6. Huang, Yanjun & Wang, Hong & Khajepour, Amir & Li, Bin & Ji, Jie & Zhao, Kegang & Hu, Chuan, 2018. "A review of power management strategies and component sizing methods for hybrid vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 132-144.
    7. Huang, Yanjun & Khajepour, Amir & Bagheri, Farshid & Bahrami, Majid, 2016. "Optimal energy-efficient predictive controllers in automotive air-conditioning/refrigeration systems," Applied Energy, Elsevier, vol. 184(C), pages 605-618.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fengqi Zhang & Lihua Wang & Serdar Coskun & Hui Pang & Yahui Cui & Junqiang Xi, 2020. "Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison, and Outlook," Energies, MDPI, vol. 13(13), pages 1-35, June.
    2. Zhuang, Weichao & Li (Eben), Shengbo & Zhang, Xiaowu & Kum, Dongsuk & Song, Ziyou & Yin, Guodong & Ju, Fei, 2020. "A survey of powertrain configuration studies on hybrid electric vehicles," Applied Energy, Elsevier, vol. 262(C).
    3. Rezaei, A. & Burl, J.B. & Solouk, A. & Zhou, B. & Rezaei, M. & Shahbakhti, M., 2017. "Catch energy saving opportunity (CESO), an instantaneous optimal energy management strategy for series hybrid electric vehicles," Applied Energy, Elsevier, vol. 208(C), pages 655-665.
    4. Qin, Zhaobo & Luo, Yugong & Zhuang, Weichao & Pan, Ziheng & Li, Keqiang & Peng, Huei, 2018. "Simultaneous optimization of topology, control and size for multi-mode hybrid tracked vehicles," Applied Energy, Elsevier, vol. 212(C), pages 1627-1641.
    5. Zhuang, Weichao & Zhang, Xiaowu & Li, Daofei & Wang, Liangmo & Yin, Guodong, 2017. "Mode shift map design and integrated energy management control of a multi-mode hybrid electric vehicle," Applied Energy, Elsevier, vol. 204(C), pages 476-488.
    6. Chen, Ruihu & Yang, Chao & Ma, Yue & Wang, Weida & Wang, Muyao & Du, Xuelong, 2022. "Online learning predictive power coordinated control strategy for off-road hybrid electric vehicles considering the dynamic response of engine generator set," Applied Energy, Elsevier, vol. 323(C).
    7. Mayyas, Abdel Ra'ouf & Kumar, Sushil & Pisu, Pierluigi & Rios, Jacqueline & Jethani, Puneet, 2017. "Model-based design validation for advanced energy management strategies for electrified hybrid power trains using innovative vehicle hardware in the loop (VHIL) approach," Applied Energy, Elsevier, vol. 204(C), pages 287-302.
    8. Zhuang, Weichao & Zhang, Xiaowu & Ding, Yang & Wang, Liangmo & Hu, Xiaosong, 2016. "Comparison of multi-mode hybrid powertrains with multiple planetary gears," Applied Energy, Elsevier, vol. 178(C), pages 624-632.
    9. Li, Liang & Wang, Xiangyu & Xiong, Rui & He, Kai & Li, Xujian, 2016. "AMT downshifting strategy design of HEV during regenerative braking process for energy conservation," Applied Energy, Elsevier, vol. 183(C), pages 914-925.
    10. Xu, Nan & Kong, Yan & Zhang, Yuanjian & Yue, Fenglai & Sui, Yan & Li, Xiaohan & Liu, Heng & Xu, Zhe, 2022. "Determination of vehicle working modes for global optimization energy management and evaluation of the economic performance for a certain control strategy," Energy, Elsevier, vol. 251(C).
    11. Verbelen, Florian & Lhomme, Walter & Vinot, Emmanuel & Stuyts, Jeroen & Vafaeipour, Majid & Hegazy, Omar & Stockman, Kurt & Sergeant, Peter, 2020. "Comparison of an optimized electrical variable transmission with the Toyota Hybrid System," Applied Energy, Elsevier, vol. 278(C).
    12. Li, Liang & Li, Xujian & Wang, Xiangyu & Song, Jian & He, Kai & Li, Chenfeng, 2016. "Analysis of downshift’s improvement to energy efficiency of an electric vehicle during regenerative braking," Applied Energy, Elsevier, vol. 176(C), pages 125-137.
    13. Huang, Yanjun & Fard, Soheil Mohagheghi & Khazraee, Milad & Wang, Hong & Khajepour, Amir, 2017. "An adaptive model predictive controller for a novel battery-powered anti-idling system of service vehicles," Energy, Elsevier, vol. 127(C), pages 318-327.
    14. Joshua Allwright & Akhlaqur Rahman & Marcus Coleman & Ambarish Kulkarni, 2022. "Heavy Multi-Articulated Vehicles with Electric and Hybrid Power Trains for Road Freight Activity: An Australian Context," Energies, MDPI, vol. 15(17), pages 1-19, August.
    15. Ju, Fei & Zhuang, Weichao & Wang, Liangmo & Zhang, Zhe, 2019. "Optimal sizing and adaptive energy management of a novel four-wheel-drive hybrid powertrain," Energy, Elsevier, vol. 187(C).
    16. Liu, Hanwu & Lei, Yulong & Fu, Yao & Li, Xingzhong, 2022. "A novel hybrid-point-line energy management strategy based on multi-objective optimization for range-extended electric vehicle," Energy, Elsevier, vol. 247(C).
    17. Li, Tianyu & Liu, Huiying & Wang, Hui & Yao, Yongming, 2020. "Hierarchical predictive control-based economic energy management for fuel cell hybrid construction vehicles," Energy, Elsevier, vol. 198(C).
    18. Shi, Dehua & Liu, Sheng & Cai, Yingfeng & Wang, Shaohua & Li, Haoran & Chen, Long, 2021. "Pontryagin’s minimum principle based fuzzy adaptive energy management for hybrid electric vehicle using real-time traffic information," Applied Energy, Elsevier, vol. 286(C).
    19. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    20. Pregelj, Boštjan & Micor, Michał & Dolanc, Gregor & Petrovčič, Janko & Jovan, Vladimir, 2016. "Impact of fuel cell and battery size to overall system performance – A diesel fuel-cell APU case study," Applied Energy, Elsevier, vol. 182(C), pages 365-375.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:182:y:2016:i:c:p:548-557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.