IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3806-d821067.html
   My bibliography  Save this article

CFD Modeling of Thermoacoustic Energy Conversion: A Review

Author

Listed:
  • Armando Di Meglio

    (Department of Engineering, University of Naples “Parthenope” Centro Direzionale, Isola C4, 80133 Naples, Italy)

  • Nicola Massarotti

    (Department of Engineering, University of Naples “Parthenope” Centro Direzionale, Isola C4, 80133 Naples, Italy)

Abstract

In this article, a comprehensive review of the computational fluid dynamics (CFD)-based modeling approach for thermoacoustic energy conversion devices is proposed. Although thermoacoustic phenomena were discovered two centuries ago, only in recent decades have such thermoacoustic devices been spreading for energy conversion. The limited understanding of thermoacoustic nonlinearities is one of the reasons limiting their diffusion. CFD is a powerful tool that allows taking into consideration all the nonlinear phenomena neglected by linear theory, on which standard designs are based, to develop energy devices that are increasingly efficient. Starting from a description of all possible numerical models to highlight the difference from a full CFD method, the nonlinearities (dynamic, fluid dynamic and acoustic) are discussed from a physical and modeling point of view. The articles found in the literature were analyzed according to their setup, with either a single thermoacoustic core (TAC) or a full device. With regard to the full devices, a further distinction was made between those models solved at the microscopic scale and those involving a macroscopic porous media approach to model the thermoacoustic core. This review shows that there is no nonlinear porous media model that can be applied to the stack, regenerator and heat exchangers of all thermoacoustic devices in oscillating flows for each frequency, and that the eventual choice of turbulence model requires further studies.

Suggested Citation

  • Armando Di Meglio & Nicola Massarotti, 2022. "CFD Modeling of Thermoacoustic Energy Conversion: A Review," Energies, MDPI, vol. 15(10), pages 1-38, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3806-:d:821067
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3806/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3806/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Yutao & Shi, Xueqiang & Li, Yaqing & Zhang, Yuanbo & Liu, Yurui, 2020. "Characteristics of thermoacoustic conversion and coupling effect at different temperature gradients," Energy, Elsevier, vol. 197(C).
    2. Chen, Geng & Wang, Yufan & Tang, Lihua & Wang, Kai & Yu, Zhibin, 2020. "Large eddy simulation of thermally induced oscillatory flow in a thermoacoustic engine," Applied Energy, Elsevier, vol. 276(C).
    3. Rogoziński, Krzysztof & Nowak, Iwona & Nowak, Grzegorz, 2017. "Modeling the operation of a thermoacoustic engine," Energy, Elsevier, vol. 138(C), pages 249-256.
    4. Wang, Kai & Sanders, Seth R. & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "Stirling cycle engines for recovering low and moderate temperature heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 89-108.
    5. Chen, Geng & Tang, Lihua & Mace, Brian & Yu, Zhibin, 2021. "Multi-physics coupling in thermoacoustic devices: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    6. Zolpakar, Nor Atiqah & Mohd-Ghazali, Normah & Hassan El-Fawal, Mawahib, 2016. "Performance analysis of the standing wave thermoacoustic refrigerator: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 626-634.
    7. Li, Xiaowei & Liu, Bin & Yu, Guoyao & Dai, Wei & Hu, Jianying & Luo, Ercang & Li, Haibing, 2017. "Experimental validation and numeric optimization of a resonance tube-coupled duplex Stirling cooler," Applied Energy, Elsevier, vol. 207(C), pages 604-612.
    8. Jin, Tao & Huang, Jiale & Feng, Ye & Yang, Rui & Tang, Ke & Radebaugh, Ray, 2015. "Thermoacoustic prime movers and refrigerators: Thermally powered engines without moving components," Energy, Elsevier, vol. 93(P1), pages 828-853.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blanc, Nathan & Laufer, Michael & Frankel, Steven & Ramon, Guy Z., 2024. "High-fidelity numerical simulations of a standing-wave thermoacoustic engine," Applied Energy, Elsevier, vol. 360(C).
    2. Guo, Lixian & Zhao, Dan & Cheng, Li & Dong, Xu & Xu, Jingyuan, 2024. "Enhancing energy conversion performances in standing-wave thermoacoustic engine with externally forcing periodic oscillations," Energy, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Lixian & Zhao, Dan & Cheng, Li & Dong, Xu & Xu, Jingyuan, 2024. "Enhancing energy conversion performances in standing-wave thermoacoustic engine with externally forcing periodic oscillations," Energy, Elsevier, vol. 292(C).
    2. Chen, Geng & Tang, Lihua & Mace, Brian & Yu, Zhibin, 2021. "Multi-physics coupling in thermoacoustic devices: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    3. Zhang, Yutao & Shi, Xueqiang & Li, Yaqing & Zhang, Yuanbo & Liu, Yurui, 2020. "Characteristics of thermoacoustic conversion and coupling effect at different temperature gradients," Energy, Elsevier, vol. 197(C).
    4. Luo, Jiaqi & Zhou, Qiang & Jin, Tao, 2023. "Theoretical and experimental investigation of acoustic field adjustment of a gas-liquid standing-wave thermoacoustic engine," Energy, Elsevier, vol. 276(C).
    5. Xiao, Lei & Luo, Kaiqi & Zhao, Dan & Chen, Geng & Bi, Tianjiao & Xu, Jingyuan & Luo, Ercang, 2023. "Time-domain acoustic-electrical analogy investigation on a high-power traveling-wave thermoacoustic electric generator," Energy, Elsevier, vol. 263(PE).
    6. Yang, Rui & Wang, Junxiang & Luo, Ercang, 2023. "Revisiting the evaporative Stirling engine: The mechanism and a case study via thermoacoustic theory," Energy, Elsevier, vol. 273(C).
    7. Wang, Bo & Chao, Yijun & Zhao, Qinyu & Wang, Haoren & Wang, Yabin & Gan, Zhihua, 2021. "A high efficiency stirling-type pulse tube refrigerator for cooling above 200 K," Energy, Elsevier, vol. 215(PB).
    8. Sindhu Preetham Burugupally & Leland Weiss, 2018. "Power Generation via Small Length Scale Thermo-Mechanical Systems: Current Status and Challenges, a Review," Energies, MDPI, vol. 11(9), pages 1-22, August.
    9. Yang, Rui & Meir, Avishai & Ramon, Guy Z., 2022. "A standing-wave, phase-change thermoacoustic engine: Experiments and model projections," Energy, Elsevier, vol. 258(C).
    10. Jin, Tao & Yang, Rui & Wang, Yi & Liu, Yuanliang & Feng, Ye, 2016. "Phase adjustment analysis and performance of a looped thermoacoustic prime mover with compliance/resistance tube," Applied Energy, Elsevier, vol. 183(C), pages 290-298.
    11. Hu, Yiwei & Luo, Kaiqi & Zhao, Dan & Chi, Jiaxin & Chen, Geng & Chen, Yuanhang & Luo, Ercang & Xu, Jingyuan, 2024. "Thermoacoustic micro-CHP system for low-grade thermal energy utilization in residential buildings," Energy, Elsevier, vol. 298(C).
    12. Wang, Kai & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Thermoacoustic Stirling power generation from LNG cold energy and low-temperature waste heat," Energy, Elsevier, vol. 127(C), pages 280-290.
    13. Blanc, Nathan & Laufer, Michael & Frankel, Steven & Ramon, Guy Z., 2024. "High-fidelity numerical simulations of a standing-wave thermoacoustic engine," Applied Energy, Elsevier, vol. 360(C).
    14. Wang, Xin & Xu, Jingyuan & Wu, Zhanghua & Luo, Ercang, 2022. "A thermoacoustic refrigerator with multiple-bypass expansion cooling configuration for natural gas liquefaction," Applied Energy, Elsevier, vol. 313(C).
    15. Xiao, Lei & Luo, Kaiqi & Chi, Jiaxin & Chen, Geng & Wu, Zhanghua & Luo, Ercang & Xu, Jingyuan, 2023. "Study on a direct-coupling thermoacoustic refrigerator using time-domain acoustic-electrical analogy method," Applied Energy, Elsevier, vol. 339(C).
    16. Xiao, Lei & Luo, Kaiqi & Hu, Jianying & Jia, Zilong & Chen, Geng & Xu, Jingyuan & Luo, Ercang, 2023. "Transient and steady performance analysis of a free-piston Stirling generator," Energy, Elsevier, vol. 273(C).
    17. Luo, Kaiqi & Luo, Ercang & Xie, Xiaoyun & Jiang, Yi, 2024. "A highly efficient heat-driven thermoacoustic system for room-temperature refrigeration by using novel configuration," Applied Energy, Elsevier, vol. 357(C).
    18. Chang, Depeng & Hu, Jianying & Sun, Yanlei & Zhang, Limin & Chen, Yanyan & Luo, Ercang, 2023. "Numerical investigation on key parameters of a double-acting free piston Stirling generator," Energy, Elsevier, vol. 278(PB).
    19. Ahmed, Fawad & Zhu, Shunmin & Yu, Guoyao & Luo, Ercang, 2022. "A potent numerical model coupled with multi-objective NSGA-II algorithm for the optimal design of Stirling engine," Energy, Elsevier, vol. 247(C).
    20. Gianluca Valenti & Aldo Bischi & Stefano Campanari & Paolo Silva & Antonino Ravidà & Ennio Macchi, 2021. "Experimental and Numerical Study of a Microcogeneration Stirling Unit under On–Off Cycling Operation," Energies, MDPI, vol. 14(4), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3806-:d:821067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.