IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v122y2017icp779-786.html
   My bibliography  Save this article

Destruction mechanism of the internal structure in Lithium-ion batteries used in aviation industry

Author

Listed:
  • Swornowski, Paweł J.

Abstract

In the article, the reasons for destruction of the internal structure in Lithium-ion batteries used in aviation industry have been explained. They manifest themselves in the battery's overheating, and in extreme cases they result in explosion. The report presents the results of experiments, which consisted in subjecting the tested Lithium-ion battery to vibration over a specified period of time and observing the changes of temperature inside it with the use of a thermal infrared camera. Another focal point of the study was the influence of vibrations on voltage change in relation to variable current load, and the influence of ambient temperature change on the Lithium-ion battery's voltage change. It has also been demonstrated that vibrations can damage the control electronics of the Lithium-ion battery. Moreover, the mechanism by which potentially dangerous thermal hot spots are formed in a Lithium-ion battery has been presented, as well as an uncertainty analysis of all measurement results.

Suggested Citation

  • Swornowski, Paweł J., 2017. "Destruction mechanism of the internal structure in Lithium-ion batteries used in aviation industry," Energy, Elsevier, vol. 122(C), pages 779-786.
  • Handle: RePEc:eee:energy:v:122:y:2017:i:c:p:779-786
    DOI: 10.1016/j.energy.2017.01.121
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217301287
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.01.121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Xuning & Lu, Languang & Ouyang, Minggao & Li, Jiangqiu & He, Xiangming, 2016. "A 3D thermal runaway propagation model for a large format lithium ion battery module," Energy, Elsevier, vol. 115(P1), pages 194-208.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Qiuhui & Zheng, Ying & Yang, Weidong & Zhang, Yong & Zhang, Hong, 2021. "Remaining useful life prediction of lithium battery based on capacity regeneration point detection," Energy, Elsevier, vol. 234(C).
    2. Chuang Sun & An Qu & Jun Zhang & Qiyang Shi & Zhenhong Jia, 2022. "Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Improved Variational Mode Decomposition and Machine Learning Algorithm," Energies, MDPI, vol. 16(1), pages 1-15, December.
    3. Shaheer Ansari & Afida Ayob & Molla Shahadat Hossain Lipu & Aini Hussain & Mohamad Hanif Md Saad, 2021. "Multi-Channel Profile Based Artificial Neural Network Approach for Remaining Useful Life Prediction of Electric Vehicle Lithium-Ion Batteries," Energies, MDPI, vol. 14(22), pages 1-22, November.
    4. Li, Niansi & Liu, Xiaoyong & Yu, Bendong & Li, Liang & Xu, Jianqiang & Tan, Qiong, 2021. "Study on the environmental adaptability of lithium-ion battery powered UAV under extreme temperature conditions," Energy, Elsevier, vol. 219(C).
    5. Lijun Zhang & Zhongqiang Mu & Xiangyu Gao, 2018. "Coupling Analysis and Performance Study of Commercial 18650 Lithium-Ion Batteries under Conditions of Temperature and Vibration," Energies, MDPI, vol. 11(10), pages 1-27, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ostanek, Jason K. & Li, Weisi & Mukherjee, Partha P. & Crompton, K.R. & Hacker, Christopher, 2020. "Simulating onset and evolution of thermal runaway in Li-ion cells using a coupled thermal and venting model," Applied Energy, Elsevier, vol. 268(C).
    2. Zhang, Yue & Song, Laifeng & Tian, Jiamin & Mei, Wenxin & Jiang, Lihua & Sun, Jinhua & Wang, Qingsong, 2024. "Modeling the propagation of internal thermal runaway in lithium-ion battery," Applied Energy, Elsevier, vol. 362(C).
    3. Sheng Yang & Wenwei Wang & Cheng Lin & Weixiang Shen & Yiding Li, 2019. "Investigation of Internal Short Circuits of Lithium-Ion Batteries under Mechanical Abusive Conditions," Energies, MDPI, vol. 12(10), pages 1-16, May.
    4. Jin, Changyong & Sun, Yuedong & Wang, Huaibin & Zheng, Yuejiu & Wang, Shuyu & Rui, Xinyu & Xu, Chengshan & Feng, Xuning & Wang, Hewu & Ouyang, Minggao, 2022. "Heating power and heating energy effect on the thermal runaway propagation characteristics of lithium-ion battery module: Experiments and modeling," Applied Energy, Elsevier, vol. 312(C).
    5. Meng, Jinhao & Cai, Lei & Stroe, Daniel-Ioan & Luo, Guangzhao & Sui, Xin & Teodorescu, Remus, 2019. "Lithium-ion battery state-of-health estimation in electric vehicle using optimized partial charging voltage profiles," Energy, Elsevier, vol. 185(C), pages 1054-1062.
    6. Ma, Mina & Wang, Yu & Duan, Qiangling & Wu, Tangqin & Sun, Jinhua & Wang, Qingsong, 2018. "Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis," Energy, Elsevier, vol. 164(C), pages 745-756.
    7. Coman, Paul T. & Darcy, Eric C. & Veje, Christian T. & White, Ralph E., 2017. "Numerical analysis of heat propagation in a battery pack using a novel technology for triggering thermal runaway," Applied Energy, Elsevier, vol. 203(C), pages 189-200.
    8. Meng, Lingyu & See, K.W. & Wang, Guofa & Wang, Yunpeng & Zhang, Yong & Zang, Caiyun & Xie, Bin, 2022. "Explosion-proof lithium-ion battery pack – In-depth investigation and experimental study on the design criteria," Energy, Elsevier, vol. 249(C).
    9. Zhu, Xiaoqing & Wang, Zhenpo & Wang, Yituo & Wang, Hsin & Wang, Cong & Tong, Lei & Yi, Mi, 2019. "Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: Thermal runaway features and safety management method," Energy, Elsevier, vol. 169(C), pages 868-880.
    10. Zhang, Liwen & Zhao, Peng & Xu, Meng & Wang, Xia, 2020. "Computational identification of the safety regime of Li-ion battery thermal runaway," Applied Energy, Elsevier, vol. 261(C).
    11. Li, Kuijie & Gao, Xinlei & Peng, Shijian & Wang, Shengshi & Zhang, Weixin & Liu, Peng & Wu, Weixiong & Wang, Huizhi & Wang, Yu & Feng, Xuning & Cao, Yuan-cheng & Wen, Jinyu & Cheng, Shijie & Ouyang, M, 2024. "A comparative study on multidimensional signal evolution during thermal runaway of lithium-ion batteries with various cathode materials," Energy, Elsevier, vol. 300(C).
    12. Xinyu Liu & Zhifu Zhou & Weitao Wu & Linsong Gao & Yang Li & Heng Huang & Zheng Huang & Yubai Li & Yongchen Song, 2022. "Three-Dimensional Modeling for the Internal Shorting Caused Thermal Runaway Process in 20Ah Lithium-Ion Battery," Energies, MDPI, vol. 15(19), pages 1-25, September.
    13. Ardani, M.I. & Patel, Y. & Siddiq, A. & Offer, G.J. & Martinez-Botas, R.F., 2018. "Combined experimental and numerical evaluation of the differences between convective and conductive thermal control on the performance of a lithium ion cell," Energy, Elsevier, vol. 144(C), pages 81-97.
    14. Lin, Shao & Ling, Ziye & Li, Suimin & Cai, Chuyue & Zhang, Zhengguo & Fang, Xiaoming, 2023. "Mitigation of lithium-ion battery thermal runaway and inhibition of thermal runaway propagation using inorganic salt hydrate with integrated latent heat and thermochemical storage," Energy, Elsevier, vol. 266(C).
    15. Zhiguo Tang & Anqi Song & Shoucheng Wang & Jianping Cheng & Changfa Tao, 2020. "Numerical Analysis of Heat Transfer Mechanism of Thermal Runaway Propagation for Cylindrical Lithium-ion Cells in Battery Module," Energies, MDPI, vol. 13(4), pages 1-18, February.
    16. Li, Junqiu & Sun, Danni & Jin, Xin & Shi, Wentong & Sun, Chao, 2019. "Lithium-ion battery overcharging thermal characteristics analysis and an impedance-based electro-thermal coupled model simulation," Applied Energy, Elsevier, vol. 254(C).
    17. Mao, Binbin & Zhao, Chunpeng & Chen, Haodong & Wang, Qingsong & Sun, Jinhua, 2021. "Experimental and modeling analysis of jet flow and fire dynamics of 18650-type lithium-ion battery," Applied Energy, Elsevier, vol. 281(C).
    18. Noelle, Daniel J. & Wang, Meng & Le, Anh V. & Shi, Yang & Qiao, Yu, 2018. "Internal resistance and polarization dynamics of lithium-ion batteries upon internal shorting," Applied Energy, Elsevier, vol. 212(C), pages 796-808.
    19. Jiang, Z.Y. & Qu, Z.G. & Zhang, J.F. & Rao, Z.H., 2020. "Rapid prediction method for thermal runaway propagation in battery pack based on lumped thermal resistance network and electric circuit analogy," Applied Energy, Elsevier, vol. 268(C).
    20. Yang, Sheng & Wang, Wenwei & Lin, Cheng & Shen, Weixiang & Li, Yiding, 2019. "Improved constitutive model of the jellyroll for cylindrical lithium ion batteries considering microscopic damage," Energy, Elsevier, vol. 185(C), pages 202-212.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:122:y:2017:i:c:p:779-786. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.