IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p313-d1017133.html
   My bibliography  Save this article

Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Improved Variational Mode Decomposition and Machine Learning Algorithm

Author

Listed:
  • Chuang Sun

    (College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China)

  • An Qu

    (Network Management Center, China Mobile Xinjiang Co., Ltd., Urumqi 830063, China)

  • Jun Zhang

    (College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China)

  • Qiyang Shi

    (College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China)

  • Zhenhong Jia

    (College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China)

Abstract

Remaining useful life (RUL) prediction of batteries is important for the health management and safety evaluation of lithium-ion batteries. Because lithium-ion batteries have capacity recovery and noise interference during actual use, direct use of measured capacity data to predict their RUL generalization ability is not efficient. Aimed at the above problems, this paper proposes an integrated life prediction method for lithium-ion batteries by combining improved variational mode decomposition (VMD) with a long short-term memory network (LSTM) and Gaussian process regression algorithm (GPR). First, the VMD algorithm decomposed the measured capacity dataset of the lithium-ion battery into a residual component and capacity regeneration component, in which the penalty factor α and mode number K in the VMD algorithm were optimized by the whale optimization algorithm (WOA). Second, the LSTM and GPR models were established to predict the residual component and capacity regeneration components, respectively. Last, the predicted components are integrated to obtain the final predicted lithium-ion battery capacity. The experimental results show that the mean absolute error (MAE) and root mean square error (RMSE) of the proposed lithium-ion battery capacity prediction model are less than 0.5% and 0.8%, respectively, and the method outperforms the five compared algorithms and several recently proposed hybrid algorithms in terms of prediction accuracy.

Suggested Citation

  • Chuang Sun & An Qu & Jun Zhang & Qiyang Shi & Zhenhong Jia, 2022. "Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Improved Variational Mode Decomposition and Machine Learning Algorithm," Energies, MDPI, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:313-:d:1017133
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/313/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/313/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. He, Jiabei & Tian, Yi & Wu, Lifeng, 2022. "A hybrid data-driven method for rapid prediction of lithium-ion battery capacity," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    2. Xiaoqiong Pang & Rui Huang & Jie Wen & Yuanhao Shi & Jianfang Jia & Jianchao Zeng, 2019. "A Lithium-ion Battery RUL Prediction Method Considering the Capacity Regeneration Phenomenon," Energies, MDPI, vol. 12(12), pages 1-14, June.
    3. Chang, Yang & Fang, Huajing, 2019. "A hybrid prognostic method for system degradation based on particle filter and relevance vector machine," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 51-63.
    4. Swornowski, Paweł J., 2017. "Destruction mechanism of the internal structure in Lithium-ion batteries used in aviation industry," Energy, Elsevier, vol. 122(C), pages 779-786.
    5. Cheng, Gong & Wang, Xinzhi & He, Yurong, 2021. "Remaining useful life and state of health prediction for lithium batteries based on empirical mode decomposition and a long and short memory neural network," Energy, Elsevier, vol. 232(C).
    6. Zhonghua Yun & Wenhu Qin & Weipeng Shi & Peng Ping, 2020. "State-of-Health Prediction for Lithium-Ion Batteries Based on a Novel Hybrid Approach," Energies, MDPI, vol. 13(18), pages 1-22, September.
    7. Zhang, Meng & Kang, Guoqing & Wu, Lifeng & Guan, Yong, 2022. "A method for capacity prediction of lithium-ion batteries under small sample conditions," Energy, Elsevier, vol. 238(PC).
    8. Hajra Khan & Imran Fareed Nizami & Saeed Mian Qaisar & Asad Waqar & Moez Krichen & Abdulaziz Turki Almaktoom, 2022. "Analyzing Optimal Battery Sizing in Microgrids Based on the Feature Selection and Machine Learning Approaches," Energies, MDPI, vol. 15(21), pages 1-22, October.
    9. Yang, Yixin, 2021. "A machine-learning prediction method of lithium-ion battery life based on charge process for different applications," Applied Energy, Elsevier, vol. 292(C).
    10. Yu, Jianbo, 2018. "State of health prediction of lithium-ion batteries: Multiscale logic regression and Gaussian process regression ensemble," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 82-95.
    11. Hua Lv & Shuzhen Xu & Yujie Liu & Wenjian Luo, 2022. "Evaluation and Comparison of Air Pollution Governance Performance: An Empirical Study Based on Jiangxi Province," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sarmad Hameed & Faraz Junejo & Imran Amin & Asif Khalid Qureshi & Irfan Khan Tanoli, 2023. "An Intelligent Deep Learning Technique for Predicting Hobbing Tool Wear Based on Gear Hobbing Using Real-Time Monitoring Data," Energies, MDPI, vol. 16(17), pages 1-21, August.
    2. Zhaowei Hu & Weifeng Huang & Huifang Li & Yizhou Zhang & Peng Wang & Xiaojun Wang & Zhiming Liu, 2023. "Facile Synthesis of Sea-Urchin-like VN as High-Performance Anode for Lithium-Ion Batteries," Energies, MDPI, vol. 16(12), pages 1-10, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Ting & Yuan, Huimei, 2022. "A hybrid approach based on decomposition algorithm and neural network for remaining useful life prediction of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    2. Yongsheng Shi & Tailin Li & Leicheng Wang & Hongzhou Lu & Yujun Hu & Beichen He & Xinran Zhai, 2023. "A Method for Predicting the Life of Lithium-Ion Batteries Based on Successive Variational Mode Decomposition and Optimized Long Short-Term Memory," Energies, MDPI, vol. 16(16), pages 1-16, August.
    3. Zhao, Hongqian & Chen, Zheng & Shu, Xing & Shen, Jiangwei & Lei, Zhenzhen & Zhang, Yuanjian, 2023. "State of health estimation for lithium-ion batteries based on hybrid attention and deep learning," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    4. Rauf, Huzaifa & Khalid, Muhammad & Arshad, Naveed, 2022. "Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Guo, Fei & Wu, Xiongwei & Liu, Lili & Ye, Jilei & Wang, Tao & Fu, Lijun & Wu, Yuping, 2023. "Prediction of remaining useful life and state of health of lithium batteries based on time series feature and Savitzky-Golay filter combined with gated recurrent unit neural network," Energy, Elsevier, vol. 270(C).
    6. Zhang, Jiusi & Jiang, Yuchen & Li, Xiang & Huo, Mingyi & Luo, Hao & Yin, Shen, 2022. "An adaptive remaining useful life prediction approach for single battery with unlabeled small sample data and parameter uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    7. Xuliang Tang & Heng Wan & Weiwen Wang & Mengxu Gu & Linfeng Wang & Linfeng Gan, 2023. "Lithium-Ion Battery Remaining Useful Life Prediction Based on Hybrid Model," Sustainability, MDPI, vol. 15(7), pages 1-18, April.
    8. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    9. Wei, Yupeng & Wu, Dazhong, 2023. "Prediction of state of health and remaining useful life of lithium-ion battery using graph convolutional network with dual attention mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    10. Liu, Yunpeng & Hou, Bo & Ahmed, Moin & Mao, Zhiyu & Feng, Jiangtao & Chen, Zhongwei, 2024. "A hybrid deep learning approach for remaining useful life prediction of lithium-ion batteries based on discharging fragments," Applied Energy, Elsevier, vol. 358(C).
    11. Tian, Yong & Dong, Qianyuan & Tian, Jindong & Li, Xiaoyu & Li, Guang & Mehran, Kamyar, 2023. "Capacity estimation of lithium-ion batteries based on optimized charging voltage section and virtual sample generation," Applied Energy, Elsevier, vol. 332(C).
    12. Wei, Meng & Balaya, Palani & Ye, Min & Song, Ziyou, 2022. "Remaining useful life prediction for 18650 sodium-ion batteries based on incremental capacity analysis," Energy, Elsevier, vol. 261(PA).
    13. Wang, Zhe & Yang, Fangfang & Xu, Qiang & Wang, Yongjian & Yan, Hong & Xie, Min, 2023. "Capacity estimation of lithium-ion batteries based on data aggregation and feature fusion via graph neural network," Applied Energy, Elsevier, vol. 336(C).
    14. Song, Dengwei & Cheng, Yujie & Zhou, An & Lu, Chen & Chong, Jin & Ma, Jian, 2024. "Remaining useful life prediction and cycle life test optimization for multiple-formula battery: A method based on multi-source transfer learning," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    15. Shaheer Ansari & Afida Ayob & Molla Shahadat Hossain Lipu & Aini Hussain & Mohamad Hanif Md Saad, 2021. "Multi-Channel Profile Based Artificial Neural Network Approach for Remaining Useful Life Prediction of Electric Vehicle Lithium-Ion Batteries," Energies, MDPI, vol. 14(22), pages 1-22, November.
    16. Chen, Dinghong & Zhang, Weige & Zhang, Caiping & Sun, Bingxiang & Cong, XinWei & Wei, Shaoyuan & Jiang, Jiuchun, 2022. "A novel deep learning-based life prediction method for lithium-ion batteries with strong generalization capability under multiple cycle profiles," Applied Energy, Elsevier, vol. 327(C).
    17. Li, Sai & Fang, Huajing & Shi, Bing, 2021. "Remaining useful life estimation of Lithium-ion battery based on interacting multiple model particle filter and support vector regression," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    18. Ma, Qiuhui & Zheng, Ying & Yang, Weidong & Zhang, Yong & Zhang, Hong, 2021. "Remaining useful life prediction of lithium battery based on capacity regeneration point detection," Energy, Elsevier, vol. 234(C).
    19. Ma, Yan & Shan, Ce & Gao, Jinwu & Chen, Hong, 2023. "Multiple health indicators fusion-based health prognostic for lithium-ion battery using transfer learning and hybrid deep learning method," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    20. He, Jiabei & Tian, Yi & Wu, Lifeng, 2022. "A hybrid data-driven method for rapid prediction of lithium-ion battery capacity," Reliability Engineering and System Safety, Elsevier, vol. 226(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:313-:d:1017133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.