IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v119y2017icp879-886.html
   My bibliography  Save this article

Cold starting characteristics analysis of hydraulic free piston engine

Author

Listed:
  • Zhang, Shuanlu
  • Zhao, Zhenfeng
  • Zhao, Changlu
  • Zhang, Fujun
  • Wang, Shan

Abstract

The cold start characteristic of hydraulic free piston diesel engine may affect its stable operation. Therefore the specific cold start characteristics, such as BDC or TDC positions, pressure in-cylinder, heat release rate, should be investigated in detail. These parameters fluctuate in some regularity in the cod start process. With the development of the free piston engine prototype and the establishment of test bench, the results are obtained. For the dynamic results, the fluctuation range of TDC and BDC positions is 8 mm and decreases with time. The thermodynamic results show that the combustion process is not stable and the pressure in-cylinder fluctuates largely in the cold start process. In addition, the combustion is rapid and knock happens inevitably. In order to investigate the reasons, a CFD model is established for temperature analysis in-cylinder and heat transfer conditions. It is found that higher start wall temperature will lead to more uniform temperature distribution. The delay period may decreases and heat release will move forward. This reason is analyzed by thermodynamic derivation based on the first law of thermodynamics. Finally, the improvement suggestions of cold start strategy are proposed.

Suggested Citation

  • Zhang, Shuanlu & Zhao, Zhenfeng & Zhao, Changlu & Zhang, Fujun & Wang, Shan, 2017. "Cold starting characteristics analysis of hydraulic free piston engine," Energy, Elsevier, vol. 119(C), pages 879-886.
  • Handle: RePEc:eee:energy:v:119:y:2017:i:c:p:879-886
    DOI: 10.1016/j.energy.2016.11.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216316577
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.11.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Yongsheng & Wang, Yang & Zhen, Xudong & Guan, Shuai & Wang, Jiancai & Wu, Yining & Chen, Yujin & Yin, Shujun, 2014. "The control of an opposed hydraulic free piston engine," Applied Energy, Elsevier, vol. 126(C), pages 213-220.
    2. Wu, Yining & Wang, Yang & Zhen, Xudong & Guan, Shuai & Wang, Jiancai, 2014. "Three-dimensional CFD (computational fluid dynamics) analysis of scavenging process in a two-stroke free-piston engine," Energy, Elsevier, vol. 68(C), pages 167-173.
    3. Mikalsen, R. & Roskilly, A.P., 2009. "A computational study of free-piston diesel engine combustion," Applied Energy, Elsevier, vol. 86(7-8), pages 1136-1143, July.
    4. Zhao, Zhenfeng & Zhang, Fujun & Huang, Ying & Zhao, Changlu & Guo, Feng, 2012. "An experimental study of the hydraulic free piston engine," Applied Energy, Elsevier, vol. 99(C), pages 226-233.
    5. Zhang, Shuanlu & Zhao, Changlu & Zhao, Zhenfeng, 2015. "Stability analysis of hydraulic free piston engine," Applied Energy, Elsevier, vol. 157(C), pages 805-813.
    6. Hu, Jibin & Wu, Wei & Yuan, Shihua & Jing, Chongbo, 2011. "Mathematical modelling of a hydraulic free-piston engine considering hydraulic valve dynamics," Energy, Elsevier, vol. 36(10), pages 6234-6242.
    7. Broatch, A. & Tormos, B. & Olmeda, P. & Novella, R., 2014. "Impact of biodiesel fuel on cold starting of automotive direct injection diesel engines," Energy, Elsevier, vol. 73(C), pages 653-660.
    8. Peng, Haiyong & Cui, Yi & Shi, Lei & Deng, Kangyao, 2008. "Effects of exhaust gas recirculation (EGR) on combustion and emissions during cold start of direct injection (DI) diesel engine," Energy, Elsevier, vol. 33(3), pages 471-479.
    9. Zhao, Zhenfeng & Wu, Dan & Zhang, Zhenyu & Zhang, Fujun & Zhao, Changlu, 2014. "Experimental investigation of the cycle-to-cycle variations in combustion process of a hydraulic free-piston engine," Energy, Elsevier, vol. 78(C), pages 257-265.
    10. Zhang, Chen & Li, Ke & Sun, Zongxuan, 2015. "Modeling of piston trajectory-based HCCI combustion enabled by a free piston engine," Applied Energy, Elsevier, vol. 139(C), pages 313-326.
    11. Hu, Jibin & Wu, Wei & Yuan, Shihua & Jing, Chongbo, 2013. "Fuel combustion under asymmetric piston motion: Tested results," Energy, Elsevier, vol. 55(C), pages 209-215.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. E, Jiaqiang & Liu, Guanlin & Zhang, Zhiqing & Han, Dandan & Chen, Jingwei & Wei, Kexiang & Gong, Jinke & Yin, Zibin, 2019. "Effect analysis on cold starting performance enhancement of a diesel engine fueled with biodiesel fuel based on an improved thermodynamic model," Applied Energy, Elsevier, vol. 243(C), pages 321-335.
    2. Fukang Ma & Shuanlu Zhang & Zhenfeng Zhao & Yifang Wang, 2021. "Research on the Operating Characteristics of Hydraulic Free-Piston Engines: A Systematic Review and Meta-Analysis," Energies, MDPI, vol. 14(12), pages 1-23, June.
    3. Yuan, Chenheng & Liu, Yang & Han, Cuijie & He, Yituan, 2019. "An investigation of mixture formation characteristics of a free-piston gasoline engine with direct-injection," Energy, Elsevier, vol. 173(C), pages 626-636.
    4. Xu, Yonghong & Tong, Liang & Zhang, Hongguang & Hou, Xiaochen & Yang, Fubin & Yu, Fei & Yang, Yuxin & Liu, Rong & Tian, Yaming & Zhao, Tenglong, 2018. "Experimental and simulation study of a free piston expander–linear generator for small-scale organic Rankine cycle," Energy, Elsevier, vol. 161(C), pages 776-791.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shuanlu & Zhao, Zhenfeng & Zhao, Changlu & Zhang, Fujun & Wang, Shan, 2016. "Experimental study of hydraulic electronic unit injector in a hydraulic free piston engine," Applied Energy, Elsevier, vol. 179(C), pages 888-898.
    2. Fukang Ma & Shuanlu Zhang & Zhenfeng Zhao & Yifang Wang, 2021. "Research on the Operating Characteristics of Hydraulic Free-Piston Engines: A Systematic Review and Meta-Analysis," Energies, MDPI, vol. 14(12), pages 1-23, June.
    3. Zhao, Zhenfeng & Wu, Dan & Zhang, Zhenyu & Zhang, Fujun & Zhao, Changlu, 2014. "Experimental investigation of the cycle-to-cycle variations in combustion process of a hydraulic free-piston engine," Energy, Elsevier, vol. 78(C), pages 257-265.
    4. E, Jiaqiang & Liu, Guanlin & Zhang, Zhiqing & Han, Dandan & Chen, Jingwei & Wei, Kexiang & Gong, Jinke & Yin, Zibin, 2019. "Effect analysis on cold starting performance enhancement of a diesel engine fueled with biodiesel fuel based on an improved thermodynamic model," Applied Energy, Elsevier, vol. 243(C), pages 321-335.
    5. Fei, Mingda & Zhang, Zhenyu & Zhao, Wenbo & Zhang, Peng & Xing, Zhaolin, 2024. "Optimal power distribution control in modular power architecture using hydraulic free piston engines," Applied Energy, Elsevier, vol. 358(C).
    6. Yuan, Chenheng & Feng, Huihua & He, Yituan & Xu, Jing, 2016. "Combustion characteristics analysis of a free-piston engine generator coupling with dynamic and scavenging," Energy, Elsevier, vol. 102(C), pages 637-649.
    7. Wu, Wei & Hu, Jibin & Yuan, Shihua, 2014. "Semi-analytical modelling of a hydraulic free-piston engine," Applied Energy, Elsevier, vol. 120(C), pages 75-84.
    8. Zhao, Zhenfeng & Wang, Shan & Zhang, Shuanlu & Zhang, Fujun, 2016. "Thermodynamic and energy saving benefits of hydraulic free-piston engines," Energy, Elsevier, vol. 102(C), pages 650-659.
    9. Boru Jia & Andrew Smallbone & Rikard Mikalsen & K.V. Shivaprasad & Sumit Roy & Anthony Paul Roskilly, 2019. "Performance Analysis of a Flexi-Fuel Turbine-Combined Free-Piston Engine Generator," Energies, MDPI, vol. 12(14), pages 1-22, July.
    10. Peng Sun & Chi Zhang & Jinhua Chen & Fei Zhao & Youyong Liao & Guilin Yang & Chinyin Chen, 2016. "Decoupling Design and Verification of a Free-Piston Linear Generator," Energies, MDPI, vol. 9(12), pages 1-23, December.
    11. Xuezhen Wang & Feixue Chen & Renfeng Zhu & Guilin Yang & Chi Zhang, 2018. "A Review of the Design and Control of Free-Piston Linear Generator," Energies, MDPI, vol. 11(8), pages 1-21, August.
    12. Zhang, Shuanlu & Zhao, Changlu & Zhao, Zhenfeng & Ma, Fukang, 2015. "Combustion characteristics analysis of hydraulic free piston diesel engine," Applied Energy, Elsevier, vol. 160(C), pages 761-768.
    13. Zhang, Chen & Sun, Zongxuan, 2016. "Using variable piston trajectory to reduce engine-out emissions," Applied Energy, Elsevier, vol. 170(C), pages 403-414.
    14. Wu, Limin & Feng, Huihua & Jia, Boru & Tang, Zhifeng & Yan, Xiaodong & Wang, Wei, 2022. "A novel method to investigate the power generation characteristics of linear generator in full frequency operation range applied to opposed-piston free-piston engine generator _ Simulation and test re," Energy, Elsevier, vol. 254(PB).
    15. Zhao, Xiaohuan & Liu, Fang & Wang, Chunhua, 2022. "Effects of different piston combustion chamber heights on heat transfer and energy conversion performance enhancement of a heavy-duty truck diesel engine," Energy, Elsevier, vol. 249(C).
    16. Zhang, Shuanlu & Zhao, Changlu & Zhao, Zhenfeng, 2015. "Stability analysis of hydraulic free piston engine," Applied Energy, Elsevier, vol. 157(C), pages 805-813.
    17. Rajasekar, E. & Murugesan, A. & Subramanian, R. & Nedunchezhian, N., 2010. "Review of NOx reduction technologies in CI engines fuelled with oxygenated biomass fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2113-2121, September.
    18. Lim, Ocktaeck & Hung, Nguyen Ba & Oh, Seokyoung & Kim, Gangchul & Song, Hanho & Iida, Norimasa, 2015. "A study of operating parameters on the linear spark ignition engine," Applied Energy, Elsevier, vol. 160(C), pages 746-760.
    19. Xu, Zhaoping & Chang, Siqin, 2010. "Prototype testing and analysis of a novel internal combustion linear generator integrated power system," Applied Energy, Elsevier, vol. 87(4), pages 1342-1348, April.
    20. Broatch, A. & Ruiz, S. & Margot, X. & Gil, A., 2010. "Methodology to estimate the threshold in-cylinder temperature for self-ignition of fuel during cold start of Diesel engines," Energy, Elsevier, vol. 35(5), pages 2251-2260.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:119:y:2017:i:c:p:879-886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.