IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v119y2017icp472-482.html
   My bibliography  Save this article

Evaluation of the energy generation potential of rain cells

Author

Listed:
  • Helseth, L.E.
  • Wen, H.Z.

Abstract

Raindrops carry mechanical energy which with proper transducers can be converted into electrical energy. Several promising transducer technologies have been developed and tested in the laboratory, but it is also necessary to incorporate the characteristics of real rain in order to be able to assess the energy generation potential of such technologies. In this paper, we present a new model for predicting the electrical output of a rain cell exposed to real rainfall parameters. We review the important parameters characterizing rain, and identify how they contribute to the available kinetic energy of a rain shower. Most significant is the rainfall intensity, which together with the physical characteristics of the transducer governs the electrical output energy of the rain cell. Here we show that under the simplifying conditions of no wind and realistic rainfall intensity distribution, the electrical output energy can be predicted based on meteorological data combined with knowledge of the characteristics of the specific rain cell under study. Future planning of the impact of rain cells on the renewable energy market requires knowledge of potential locations and performance, thus suggesting the need for such a model.

Suggested Citation

  • Helseth, L.E. & Wen, H.Z., 2017. "Evaluation of the energy generation potential of rain cells," Energy, Elsevier, vol. 119(C), pages 472-482.
  • Handle: RePEc:eee:energy:v:119:y:2017:i:c:p:472-482
    DOI: 10.1016/j.energy.2016.12.097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216319028
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.12.097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Helseth, L.E. & Guo, X.D., 2016. "Fluorinated ethylene propylene thin film for water droplet energy harvesting," Renewable Energy, Elsevier, vol. 99(C), pages 845-851.
    2. Johnson, Neil & Kang, Jian & Hathway, Elizabeth Abigail, 2014. "Acoustics of weirs: Potential implications for micro-hydropower noise," Renewable Energy, Elsevier, vol. 71(C), pages 351-360.
    3. Ilyas, Mohammad Adnan & Swingler, Jonathan, 2015. "Piezoelectric energy harvesting from raindrop impacts," Energy, Elsevier, vol. 90(P1), pages 796-806.
    4. Paish, Oliver, 2002. "Small hydro power: technology and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(6), pages 537-556, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Chaoyang & Yang, Yaowen & Upadrashta, Deepesh & Zhao, Liya, 2021. "Design, modeling and experimental validation of a low-frequency cantilever triboelectric energy harvester," Energy, Elsevier, vol. 214(C).
    2. Jiaxin Yu & Jun Wang, 2020. "Optimization Design of a Rain-Power Utilization System Based on a Siphon and Its Application in a High-Rise Building," Energies, MDPI, vol. 13(18), pages 1-18, September.
    3. Helseth, L.E., 2021. "Harvesting energy from light and water droplets by covering photovoltaic cells with transparent polymers," Applied Energy, Elsevier, vol. 300(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helseth, L.E., 2021. "Harvesting energy from light and water droplets by covering photovoltaic cells with transparent polymers," Applied Energy, Elsevier, vol. 300(C).
    2. Kan, Kan & Zhang, Qingying & Xu, Zhe & Zheng, Yuan & Gao, Qiang & Shen, Lian, 2022. "Energy loss mechanism due to tip leakage flow of axial flow pump as turbine under various operating conditions," Energy, Elsevier, vol. 255(C).
    3. Joe Butchers & Shaun Benzon & Sam Williamson & Julian Booker & George Aggidis, 2021. "A Rationalised CFD Design Methodology for Turgo Turbines to Enable Local Manufacture in the Global South," Energies, MDPI, vol. 14(19), pages 1-23, October.
    4. Vermaak, Herman Jacobus & Kusakana, Kanzumba & Koko, Sandile Philip, 2014. "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 625-633.
    5. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    6. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Canales, Fausto A. & Lin, Shaoquan & Ahmed, Salman & Zhang, Yijie, 2021. "Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island," Renewable Energy, Elsevier, vol. 164(C), pages 1376-1394.
    7. Kumar, Deepak & Katoch, S.S., 2015. "Sustainability suspense of small hydropower projects: A study from western Himalayan region of India," Renewable Energy, Elsevier, vol. 76(C), pages 220-233.
    8. Elgammi, Moutaz & Hamad, Abduljawad Ashour, 2022. "A feasibility study of operating a low static pressure head micro pelton turbine based on water hammer phenomenon," Renewable Energy, Elsevier, vol. 195(C), pages 1-16.
    9. Ram Adhikari & David Wood, 2018. "The Design of High Efficiency Crossflow Hydro Turbines: A Review and Extension," Energies, MDPI, vol. 11(2), pages 1-18, January.
    10. Kahraman, Gökhan & Yücel, Halit Lütfi & Öztop, Hakan F., 2009. "Evaluation of energy efficiency using thermodynamics analysis in a hydropower plant: A case study," Renewable Energy, Elsevier, vol. 34(6), pages 1458-1465.
    11. Sotoude Haghighi, M.H. & Mirghavami, S.M. & Chini, S.F. & Riasi, A., 2019. "Developing a method to design and simulation of a very low head axial turbine with adjustable rotor blades," Renewable Energy, Elsevier, vol. 135(C), pages 266-276.
    12. Spänhoff, Bernd, 2014. "Current status and future prospects of hydropower in Saxony (Germany) compared to trends in Germany, the European Union and the World," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 518-525.
    13. Cobb, Bryan R. & Sharp, Kendra V., 2013. "Impulse (Turgo and Pelton) turbine performance characteristics and their impact on pico-hydro installations," Renewable Energy, Elsevier, vol. 50(C), pages 959-964.
    14. Khan, Rakhshanda, 2015. "Small Hydro Power in India: Is it a sustainable business?," Applied Energy, Elsevier, vol. 152(C), pages 207-216.
    15. Pang, Mingyue & Zhang, Lixiao & Bahaj, AbuBakr S. & Xu, Kaipeng & Hao, Yan & Wang, Changbo, 2018. "Small hydropower development in Tibet: Insight from a survey in Nagqu Prefecture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3032-3040.
    16. Laghari, J.A. & Mokhlis, H. & Bakar, A.H.A. & Mohammad, Hasmaini, 2013. "A comprehensive overview of new designs in the hydraulic, electrical equipments and controllers of mini hydro power plants making it cost effective technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 279-293.
    17. Lahimer, A.A. & Alghoul, M.A. & Yousif, Fadhil & Razykov, T.M. & Amin, N. & Sopian, K., 2013. "Research and development aspects on decentralized electrification options for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 314-324.
    18. Soha, Tamás & Munkácsy, Béla & Harmat, Ádám & Csontos, Csaba & Horváth, Gergely & Tamás, László & Csüllög, Gábor & Daróczi, Henriett & Sáfián, Fanni & Szabó, Mária, 2017. "GIS-based assessment of the opportunities for small-scale pumped hydro energy storage in middle-mountain areas focusing on artificial landscape features," Energy, Elsevier, vol. 141(C), pages 1363-1373.
    19. Helseth, L.E. & Guo, X.D., 2016. "Fluorinated ethylene propylene thin film for water droplet energy harvesting," Renewable Energy, Elsevier, vol. 99(C), pages 845-851.
    20. Nishi, Yasuyuki & Mori, Nozomi & Yamada, Naoki & Inagaki, Terumi, 2022. "Study on the design method for axial flow runner that combines design of experiments, response surface method, and optimization method to one-dimensional design method," Renewable Energy, Elsevier, vol. 185(C), pages 96-110.

    More about this item

    Keywords

    Rain; Droplet; Energy harvest;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:119:y:2017:i:c:p:472-482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.