IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics0360544224012805.html
   My bibliography  Save this article

Thermodynamic and advanced exergy analysis of a trans-critical CO2 energy storage system integrated with heat supply and solar energy

Author

Listed:
  • Liu, Zhongyan
  • Guan, Hongwei
  • Shao, Jiawei
  • Jin, Xu
  • Su, Wei
  • Zhang, Hao
  • Li, Heng
  • Sun, Dahan
  • Wei, Tengfei

Abstract

In order to improve the utilization of renewable energy in energy applications and to solve the problem of intermittency in the process of solar energy application, this paper introduces a trans-critical CO2 energy storage system integrating solar energy and heat supply, and thermodynamic analysis and advanced energy efficiency analysis of the system are carried out. The system demonstrates impressive performance under standard conditions, achieving an energy storage efficiency of 77.19 %, and an exergetic efficiency of 68.03 %. The system's maximum avoidable exergy destruction is 4.17 MW, representing 68.77 % of the total exergy destruction, indicating significant potential for improvement. When it comes to component optimization, there are disparities in the results obtained through conventional exergetic analysis and advanced exergetic analysis. Conventional exergetic analysis suggests that the Reheater 4 should be optimized initially, followed by expander 1 and intercooler 3 optimization. However, according to advanced exergetic analysis, the recommended sequence is to optimize the Reheater 4 first, followed by expander 1 and intercooler 3. Advanced exergetic analysis reveals a significant endogenous exergy destruction of 68.23 % within the system, indicating weak inter-component relationships. Consequently, the primary focus should be optimizing the components themselves, with special emphasis on the RE4 and intercooler 3, as they have the largest exergy destructions.

Suggested Citation

  • Liu, Zhongyan & Guan, Hongwei & Shao, Jiawei & Jin, Xu & Su, Wei & Zhang, Hao & Li, Heng & Sun, Dahan & Wei, Tengfei, 2024. "Thermodynamic and advanced exergy analysis of a trans-critical CO2 energy storage system integrated with heat supply and solar energy," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224012805
    DOI: 10.1016/j.energy.2024.131507
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224012805
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131507?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Zhiwen & Xiong, Wei & Ting, David S.-K. & Carriveau, Rupp & Wang, Zuwen, 2016. "Conventional and advanced exergy analyses of an underwater compressed air energy storage system," Applied Energy, Elsevier, vol. 180(C), pages 810-822.
    2. Wang, Yinglong & Chen, Zhengrun & Shen, Yuanyuan & Ma, Zhaoyuan & Li, Huiyuan & Liu, Xiaobin & Zhu, Zhaoyou & Qi, Jianguang & Cui, Peizhe & Wang, Lei & Ma, Yixin & Xu, Dongmei, 2021. "Advanced exergy and exergoeconomic analysis of an integrated system combining CO2 capture-storage and waste heat utilization processes," Energy, Elsevier, vol. 219(C).
    3. He, Qing & Liu, Hui & Hao, Yinping & Liu, Yaning & Liu, Wenyi, 2018. "Thermodynamic analysis of a novel supercritical compressed carbon dioxide energy storage system through advanced exergy analysis," Renewable Energy, Elsevier, vol. 127(C), pages 835-849.
    4. Caliskan, Hakan & Açıkkalp, Emin & Rostamnejad Takleh, H. & Zare, V., 2023. "Advanced, extended and combined extended-advanced exergy analyses of a novel geothermal powered combined cooling, heating and power (CCHP) system," Renewable Energy, Elsevier, vol. 206(C), pages 125-134.
    5. Ozlu, Sinan & Dincer, Ibrahim, 2016. "Performance assessment of a new solar energy-based multigeneration system," Energy, Elsevier, vol. 112(C), pages 164-178.
    6. Cao, Lihua & Li, Xiaoli & Wang, Di, 2022. "A thermodynamic system of coal-fired power unit coupled S–CO2 energy-storage cycle," Energy, Elsevier, vol. 259(C).
    7. Fallah, M. & Siyahi, H. & Ghiasi, R. Akbarpour & Mahmoudi, S.M.S. & Yari, M. & Rosen, M.A., 2016. "Comparison of different gas turbine cycles and advanced exergy analysis of the most effective," Energy, Elsevier, vol. 116(P1), pages 701-715.
    8. Zhang, Yuan & Yang, Ke & Hong, Hui & Zhong, Xiaohui & Xu, Jianzhong, 2016. "Thermodynamic analysis of a novel energy storage system with carbon dioxide as working fluid," Renewable Energy, Elsevier, vol. 99(C), pages 682-697.
    9. Grazzini, Giuseppe & Milazzo, Adriano, 2008. "Thermodynamic analysis of CAES/TES systems for renewable energy plants," Renewable Energy, Elsevier, vol. 33(9), pages 1998-2006.
    10. Kim, Y.M. & Shin, D.G. & Favrat, D., 2011. "Operating characteristics of constant-pressure compressed air energy storage (CAES) system combined with pumped hydro storage based on energy and exergy analysis," Energy, Elsevier, vol. 36(10), pages 6220-6233.
    11. Liu, Zhan & Liu, Xu & Zhang, Weifeng & Yang, Shanju & Li, Hailong & Yang, Xiaohu, 2022. "Thermodynamic analysis on the feasibility of a liquid energy storage system using CO2-based mixture as the working fluid," Energy, Elsevier, vol. 238(PA).
    12. Wang, Yiming & Xie, Gongnan & Zhu, Huaitao & Yuan, Han, 2023. "Assessment on energy and exergy of combined supercritical CO2 Brayton cycles with sizing printed-circuit-heat-exchangers," Energy, Elsevier, vol. 263(PA).
    13. Al-Sulaiman, Fahad A. & Atif, Maimoon, 2015. "Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower," Energy, Elsevier, vol. 82(C), pages 61-71.
    14. Kelly, S. & Tsatsaronis, G. & Morosuk, T., 2009. "Advanced exergetic analysis: Approaches for splitting the exergy destruction into endogenous and exogenous parts," Energy, Elsevier, vol. 34(3), pages 384-391.
    15. Li, Yongliang & Wang, Xiang & Li, Dacheng & Ding, Yulong, 2012. "A trigeneration system based on compressed air and thermal energy storage," Applied Energy, Elsevier, vol. 99(C), pages 316-323.
    16. Morosuk, Tatiana & Tsatsaronis, George, 2008. "A new approach to the exergy analysis of absorption refrigeration machines," Energy, Elsevier, vol. 33(6), pages 890-907.
    17. Cavallo, Alfred, 2007. "Controllable and affordable utility-scale electricity from intermittent wind resources and compressed air energy storage (CAES)," Energy, Elsevier, vol. 32(2), pages 120-127.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Qing & Liu, Hui & Hao, Yinping & Liu, Yaning & Liu, Wenyi, 2018. "Thermodynamic analysis of a novel supercritical compressed carbon dioxide energy storage system through advanced exergy analysis," Renewable Energy, Elsevier, vol. 127(C), pages 835-849.
    2. Wang, Zhiwen & Xiong, Wei & Ting, David S.-K. & Carriveau, Rupp & Wang, Zuwen, 2016. "Conventional and advanced exergy analyses of an underwater compressed air energy storage system," Applied Energy, Elsevier, vol. 180(C), pages 810-822.
    3. Mohammadi, Z. & Fallah, M. & Mahmoudi, S.M. Seyed, 2019. "Advanced exergy analysis of recompression supercritical CO2 cycle," Energy, Elsevier, vol. 178(C), pages 631-643.
    4. Ebrahimi, Mehdi & Carriveau, Rupp & Ting, David S.-K. & McGillis, Andrew, 2019. "Conventional and advanced exergy analysis of a grid connected underwater compressed air energy storage facility," Applied Energy, Elsevier, vol. 242(C), pages 1198-1208.
    5. Mohammadi, Zahra & Fallah, Mohsen, 2023. "Conventional and advanced exergy investigation of a double flash cycle integrated by absorption cooling, ORC, and TEG power system driven by geothermal energy," Energy, Elsevier, vol. 282(C).
    6. Jannelli, E. & Minutillo, M. & Lubrano Lavadera, A. & Falcucci, G., 2014. "A small-scale CAES (compressed air energy storage) system for stand-alone renewable energy power plant for a radio base station: A sizing-design methodology," Energy, Elsevier, vol. 78(C), pages 313-322.
    7. Facci, Andrea L. & Sánchez, David & Jannelli, Elio & Ubertini, Stefano, 2015. "Trigenerative micro compressed air energy storage: Concept and thermodynamic assessment," Applied Energy, Elsevier, vol. 158(C), pages 243-254.
    8. Zhao, Hongxia & Yuan, Tianpeng & Gao, Jia & Wang, Xinli & Yan, Jia, 2019. "Conventional and advanced exergy analysis of parallel and series compression-ejection hybrid refrigeration system for a household refrigerator with R290," Energy, Elsevier, vol. 166(C), pages 845-861.
    9. Fu, Xintao & Yan, Xuewen & Liu, Zhan, 2023. "Coupling thermodynamics and economics of liquid CO2 energy storage system with refrigerant additives," Energy, Elsevier, vol. 284(C).
    10. Zhang, Yuan & Yang, Ke & Li, Xuemei & Xu, Jianzhong, 2013. "The thermodynamic effect of air storage chamber model on Advanced Adiabatic Compressed Air Energy Storage System," Renewable Energy, Elsevier, vol. 57(C), pages 469-478.
    11. Ustaoglu, Abid, 2020. "Parametric study of absorption refrigeration with vapor compression refrigeration cycle using wet, isentropic and azeotropic working fluids: Conventional and advanced exergy approach," Energy, Elsevier, vol. 201(C).
    12. Fallah, M. & Mohammadi, Z. & Mahmoudi, S.M. Seyed, 2022. "Advanced exergy analysis of the combined S–CO2/ORC system," Energy, Elsevier, vol. 241(C).
    13. Dewevre, Florent & Lacroix, Clément & Loubar, Khaled & Poncet, Sébastien, 2024. "Carbon dioxide energy storage systems: Current researches and perspectives," Renewable Energy, Elsevier, vol. 224(C).
    14. Szablowski, Lukasz & Krawczyk, Piotr & Badyda, Krzysztof & Karellas, Sotirios & Kakaras, Emmanuel & Bujalski, Wojciech, 2017. "Energy and exergy analysis of adiabatic compressed air energy storage system," Energy, Elsevier, vol. 138(C), pages 12-18.
    15. Fallah, M. & Mahmoudi, S.M.S. & Yari, M., 2017. "Advanced exergy analysis for an anode gas recirculation solid oxide fuel cell," Energy, Elsevier, vol. 141(C), pages 1097-1112.
    16. Briola, Stefano & Di Marco, Paolo & Gabbrielli, Roberto & Riccardi, Juri, 2017. "Sensitivity analysis for the energy performance assessment of hybrid compressed air energy storage systems," Applied Energy, Elsevier, vol. 206(C), pages 1552-1563.
    17. Thomas Guewouo & Lingai Luo & Dominique Tarlet & Mohand Tazerout, 2019. "Identification of Optimal Parameters for a Small-Scale Compressed-Air Energy Storage System Using Real Coded Genetic Algorithm," Energies, MDPI, vol. 12(3), pages 1-32, January.
    18. Liu, X.G. & He, C. & He, C.C. & Chen, J.J. & Zhang, B.J. & Chen, Q.L., 2017. "A new retrofit approach to the absorption-stabilization process for improving energy efficiency in refineries," Energy, Elsevier, vol. 118(C), pages 1131-1145.
    19. Oyekale, Joseph & Petrollese, Mario & Cau, Giorgio, 2020. "Modified auxiliary exergy costing in advanced exergoeconomic analysis applied to a hybrid solar-biomass organic Rankine cycle plant," Applied Energy, Elsevier, vol. 268(C).
    20. Liu, Jin-Long & Wang, Jian-Hua, 2015. "Thermodynamic analysis of a novel tri-generation system based on compressed air energy storage and pneumatic motor," Energy, Elsevier, vol. 91(C), pages 420-429.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224012805. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.