IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v115y2016ip1p820-829.html
   My bibliography  Save this article

Analysis of the change of the specific heat loss coefficient of buildings resulted by the variation of the geometry and the moisture load

Author

Listed:
  • Szodrai, Ferenc
  • Lakatos, Ákos
  • Kalmár, Ferenc

Abstract

Nowadays, energy saving as well as energy-conscious design and refurbishments of buildings became the most important actions to be achieved worldwide. The energy performance of a building can be considerably affected by climate. The significance of a ‘design with climate’ approach is highlighted in this paper. The article investigates the impact of climate conditions (focusing on humidity and precipitation) on design decisions. The overall energy performance of the building is achieved by the adopted architectural and technical solutions. In this study the thermal performance of the envelope of nearly zero energy buildings, built from different materials with different moisture load is tested and demonstrated. The change of the specific heat loss coefficient of buildings is presented in function of the building structure (wall and insulation), design (envelope surface to heated volume ratio) and moisture content of materials. In the conclusion the article attempts to give suggestions to stakeholders, decision makers and planners to choose the appropriate envelope structure from moisture resistant, geometry and cost-optimum points of view. Since - the building enclosure is the interface between the interior of the building and the outdoor environment - a building's energy consumption depends on certain envelope design elements to a large extent.

Suggested Citation

  • Szodrai, Ferenc & Lakatos, Ákos & Kalmár, Ferenc, 2016. "Analysis of the change of the specific heat loss coefficient of buildings resulted by the variation of the geometry and the moisture load," Energy, Elsevier, vol. 115(P1), pages 820-829.
  • Handle: RePEc:eee:energy:v:115:y:2016:i:p1:p:820-829
    DOI: 10.1016/j.energy.2016.09.073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216313147
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.09.073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abanda, F.H. & Byers, L., 2016. "An investigation of the impact of building orientation on energy consumption in a domestic building using emerging BIM (Building Information Modelling)," Energy, Elsevier, vol. 97(C), pages 517-527.
    2. Comodi, Gabriele & Giantomassi, Andrea & Severini, Marco & Squartini, Stefano & Ferracuti, Francesco & Fonti, Alessandro & Nardi Cesarini, Davide & Morodo, Matteo & Polonara, Fabio, 2015. "Multi-apartment residential microgrid with electrical and thermal storage devices: Experimental analysis and simulation of energy management strategies," Applied Energy, Elsevier, vol. 137(C), pages 854-866.
    3. Scott, Michael J. & Daly, Don S. & Hathaway, John E. & Lansing, Carina S. & Liu, Ying & McJeon, Haewon C. & Moss, Richard H. & Patel, Pralit L. & Peterson, Marty J. & Rice, Jennie S. & Zhou, Yuyu, 2015. "Calculating impacts of energy standards on energy demand in U.S. buildings with uncertainty in an integrated assessment model," Energy, Elsevier, vol. 90(P2), pages 1682-1694.
    4. Mustafaraj, Giorgio & Marini, Dashamir & Costa, Andrea & Keane, Marcus, 2014. "Model calibration for building energy efficiency simulation," Applied Energy, Elsevier, vol. 130(C), pages 72-85.
    5. Verbai, Zoltán & Kocsis, Imre & Kalmár, Ferenc, 2015. "Outdoor dry bulb heating design temperatures for Hungary," Energy, Elsevier, vol. 93(P2), pages 1404-1412.
    6. Congedo, Paolo Maria & Baglivo, Cristina & D'Agostino, Delia & Zacà, Ilaria, 2015. "Cost-optimal design for nearly zero energy office buildings located in warm climates," Energy, Elsevier, vol. 91(C), pages 967-982.
    7. Naji, Sareh & Keivani, Afram & Shamshirband, Shahaboddin & Alengaram, U. Johnson & Jumaat, Mohd Zamin & Mansor, Zulkefli & Lee, Malrey, 2016. "Estimating building energy consumption using extreme learning machine method," Energy, Elsevier, vol. 97(C), pages 506-516.
    8. Verbai, Zoltán & Lakatos, Ákos & Kalmár, Ferenc, 2014. "Prediction of energy demand for heating of residential buildings using variable degree day," Energy, Elsevier, vol. 76(C), pages 780-787.
    9. Evins, Ralph, 2015. "Multi-level optimization of building design, energy system sizing and operation," Energy, Elsevier, vol. 90(P2), pages 1775-1789.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bastien, Diane & Winther-Gaasvig, Martin, 2018. "Influence of driving rain and vapour diffusion on the hygrothermal performance of a hygroscopic and permeable building envelope," Energy, Elsevier, vol. 164(C), pages 288-297.
    2. Evi Lambie & Dirk Saelens, 2020. "Identification of the Building Envelope Performance of a Residential Building: A Case Study," Energies, MDPI, vol. 13(10), pages 1-28, May.
    3. Attila Kostyák & Csaba Béres & Szabolcs Szekeres & Imre Csáky, 2022. "Buffer Tank Discharge Strategies in the Case of a Centrifugal Water Chiller," Energies, MDPI, vol. 16(1), pages 1-15, December.
    4. Jan Kočí & Václav Kočí & Robert Černý, 2019. "A Method for Rapid Evaluation of Thermal Performance of Wall Assemblies Based on Geographical Location," Energies, MDPI, vol. 12(7), pages 1-16, April.
    5. Anatolijs Borodinecs & Arturs Palcikovskis & Vladislavs Jacnevs, 2022. "Indoor Air CO 2 Sensors and Possible Uncertainties of Measurements: A Review and an Example of Practical Measurements," Energies, MDPI, vol. 15(19), pages 1-15, September.
    6. Gábor L. Szabó, 2020. "Thermo-Chemical Instability and Energy Analysis of Absorption Heat Pumps," Energies, MDPI, vol. 13(8), pages 1-13, April.
    7. Anghel, E.M. & Pavel, P.M. & Constantinescu, M. & Petrescu, S. & Atkinson, I. & Buixaderas, E., 2017. "Thermal transfer performance of a spherical encapsulated PEG 6000-based composite for thermal energy storage," Applied Energy, Elsevier, vol. 208(C), pages 1222-1231.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanhudo, Luís & Ramos, Nuno M.M. & Poças Martins, João & Almeida, Ricardo M.S.F. & Barreira, Eva & Simões, M. Lurdes & Cardoso, Vítor, 2018. "Building information modeling for energy retrofitting – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 249-260.
    2. Stevanović, Sanja, 2016. "Parametric study of a cost-optimal, energy efficient office building in Serbia," Energy, Elsevier, vol. 117(P2), pages 492-505.
    3. Li, Wenliang & Zhou, Yuyu & Cetin, Kristen & Eom, Jiyong & Wang, Yu & Chen, Gang & Zhang, Xuesong, 2017. "Modeling urban building energy use: A review of modeling approaches and procedures," Energy, Elsevier, vol. 141(C), pages 2445-2457.
    4. Iolanda Saviuc & Herbert Peremans & Steven Van Passel & Kevin Milis, 2019. "Economic Performance of Using Batteries in European Residential Microgrids under the Net-Metering Scheme," Energies, MDPI, vol. 12(1), pages 1-28, January.
    5. Jinhui Ma & Haijing Huang & Mingxi Peng & Yihuan Zhou, 2024. "Investigating the Heterogeneity Effects of Urban Morphology on Building Energy Consumption from a Spatio-Temporal Perspective Using Old Residential Buildings on a University Campus," Land, MDPI, vol. 13(10), pages 1-24, October.
    6. Amal A. Al-Shargabi & Abdulbasit Almhafdy & Dina M. Ibrahim & Manal Alghieth & Francisco Chiclana, 2021. "Tuning Deep Neural Networks for Predicting Energy Consumption in Arid Climate Based on Buildings Characteristics," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
    7. Liu, Che & Sun, Bo & Zhang, Chenghui & Li, Fan, 2020. "A hybrid prediction model for residential electricity consumption using holt-winters and extreme learning machine," Applied Energy, Elsevier, vol. 275(C).
    8. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    9. Qiu, Rui & Zhang, Haoran & Wang, Guotao & Liang, Yongtu & Yan, Jinyue, 2023. "Green hydrogen-based energy storage service via power-to-gas technologies integrated with multi-energy microgrid," Applied Energy, Elsevier, vol. 350(C).
    10. Wirtz, Marco, 2023. "nPro: A web-based planning tool for designing district energy systems and thermal networks," Energy, Elsevier, vol. 268(C).
    11. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    12. Osorio, J.D. & Rivera-Alvarez, A. & Swain, M. & Ordonez, J.C., 2015. "Exergy analysis of discharging multi-tank thermal energy storage systems with constant heat extraction," Applied Energy, Elsevier, vol. 154(C), pages 333-343.
    13. Rongrong Yu & Ning Gu & Michael J. Ostwald, 2022. "Architects’ Perceptions about Sustainable Design Practice and the Support Provided for This by Digital Tools: A Study in Australia," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    14. Rongjiang Ma & Shen Yang & Xianlin Wang & Xi-Cheng Wang & Ming Shan & Nanyang Yu & Xudong Yang, 2020. "Systematic Method for the Energy-Saving Potential Calculation of Air-Conditioning Systems via Data Mining. Part I: Methodology," Energies, MDPI, vol. 14(1), pages 1-15, December.
    15. Papada, Lefkothea & Kaliampakos, Dimitris, 2016. "Developing the energy profile of mountainous areas," Energy, Elsevier, vol. 107(C), pages 205-214.
    16. Luca Brunelli & Emiliano Borri & Anna Laura Pisello & Andrea Nicolini & Carles Mateu & Luisa F. Cabeza, 2024. "Thermal Energy Storage in Energy Communities: A Perspective Overview through a Bibliometric Analysis," Sustainability, MDPI, vol. 16(14), pages 1-27, July.
    17. Abada, I. & Ehrenmann, A. & Lambin, X., 2017. "On the viability of energy communities," Cambridge Working Papers in Economics 1740, Faculty of Economics, University of Cambridge.
    18. Miguel Carpintero-Rentería & David Santos-Martín & Josep M. Guerrero, 2019. "Microgrids Literature Review through a Layers Structure," Energies, MDPI, vol. 12(22), pages 1-22, November.
    19. Omaji Samuel & Nadeem Javaid & Mahmood Ashraf & Farruh Ishmanov & Muhammad Khalil Afzal & Zahoor Ali Khan, 2018. "Jaya based Optimization Method with High Dispatchable Distributed Generation for Residential Microgrid," Energies, MDPI, vol. 11(6), pages 1-29, June.
    20. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:115:y:2016:i:p1:p:820-829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.