IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v76y2014icp780-787.html
   My bibliography  Save this article

Prediction of energy demand for heating of residential buildings using variable degree day

Author

Listed:
  • Verbai, Zoltán
  • Lakatos, Ákos
  • Kalmár, Ferenc

Abstract

In all European countries the energy and building related legislature stand for energy refurbishment of existing building stock. Depending on the economical situation of countries there are different national programs that help owners to invest in energy related refurbishments of their houses or flats. The financial support is given only in case of a certain payback time, which should be obtained by the proposed project. The payback time for heating related investments in Hungary is calculated based on the theoretical degree day curve, which can lead to inaccurate results. Thus in this paper a long-term analysis of heating degree day, done for Debrecen (the second largest city of Hungary), is presented. We focused our analysis on residential buildings. It was found that the degree day has important variations during the analysed decades, which can lead to deviations of energy consumption up to 15–18%. Furthermore, taking into account the heat island effects in Debrecen, it was proven that differences of about 22% can be obtained between real degree day values in different zones of the city. The interrelation between specific heat gains and balance point temperature, respectively the effects of glazed area of the facades on the balance point temperature was discussed. It was found that for buildings with similar thermal characteristics of the envelope and the same values of specific heat gains, the balance point temperature can be even double for a detached house compared with a block of flats.

Suggested Citation

  • Verbai, Zoltán & Lakatos, Ákos & Kalmár, Ferenc, 2014. "Prediction of energy demand for heating of residential buildings using variable degree day," Energy, Elsevier, vol. 76(C), pages 780-787.
  • Handle: RePEc:eee:energy:v:76:y:2014:i:c:p:780-787
    DOI: 10.1016/j.energy.2014.08.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214010299
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.08.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Papakostas, K. & Kyriakis, N., 2005. "Heating and cooling degree-hours for Athens and Thessaloniki, Greece," Renewable Energy, Elsevier, vol. 30(12), pages 1873-1880.
    2. Saros, Georg, 1984. "A model for planning energy requirements for residential heating," Energy Economics, Elsevier, vol. 6(3), pages 202-207, July.
    3. Büyükalaca, Orhan & Bulut, Hüsamettin & YIlmaz, Tuncay, 2001. "Analysis of variable-base heating and cooling degree-days for Turkey," Applied Energy, Elsevier, vol. 69(4), pages 269-283, August.
    4. Şen, Zekai & Kadiogl̂u, Mikdat, 1998. "Heating degree–days for arid regions," Energy, Elsevier, vol. 23(12), pages 1089-1094.
    5. Amstalden, Roger W. & Kost, Michael & Nathani, Carsten & Imboden, Dieter M., 2007. "Economic potential of energy-efficient retrofitting in the Swiss residential building sector: The effects of policy instruments and energy price expectations," Energy Policy, Elsevier, vol. 35(3), pages 1819-1829, March.
    6. Olonscheck, Mady & Holsten, Anne & Kropp, Jürgen P., 2011. "Heating and cooling energy demand and related emissions of the German residential building stock under climate change," Energy Policy, Elsevier, vol. 39(9), pages 4795-4806, September.
    7. Durmayaz, Ahmet & Kadıoǧlu, Mikdat & Şen, Zekai, 2000. "An application of the degree-hours method to estimate the residential heating energy requirement and fuel consumption in Istanbul," Energy, Elsevier, vol. 25(12), pages 1245-1256.
    8. Anders Moberg & Dmitry M. Sonechkin & Karin Holmgren & Nina M. Datsenko & Wibjörn Karlén, 2005. "Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data," Nature, Nature, vol. 433(7026), pages 613-617, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ashfaq, Asad & Kamali, Zulqarnain Haider & Agha, Mujtaba Hassan & Arshid, Hirra, 2017. "Heat coupling of the pan-European vs. regional electrical grid with excess renewable energy," Energy, Elsevier, vol. 122(C), pages 363-377.
    2. Edorta Carrascal & Izaskun Garrido & Aitor J. Garrido & José María Sala, 2016. "Optimization of the Heating System Use in Aged Public Buildings via Model Predictive Control," Energies, MDPI, vol. 9(4), pages 1-20, March.
    3. Tamás Buday & Erika Buday-Bódi, 2023. "Reduction in CO 2 Emissions with Bivalent Heat Pump Systems," Energies, MDPI, vol. 16(7), pages 1-18, April.
    4. Chai, Jiale & Huang, Pei & Sun, Yongjun, 2019. "Investigations of climate change impacts on net-zero energy building lifecycle performance in typical Chinese climate regions," Energy, Elsevier, vol. 185(C), pages 176-189.
    5. Wirtz, Marco, 2023. "nPro: A web-based planning tool for designing district energy systems and thermal networks," Energy, Elsevier, vol. 268(C).
    6. Szodrai, Ferenc & Lakatos, Ákos & Kalmár, Ferenc, 2016. "Analysis of the change of the specific heat loss coefficient of buildings resulted by the variation of the geometry and the moisture load," Energy, Elsevier, vol. 115(P1), pages 820-829.
    7. Kapp, Sean & Choi, Jun-Ki & Hong, Taehoon, 2023. "Predicting industrial building energy consumption with statistical and machine-learning models informed by physical system parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    8. Papada, Lefkothea & Kaliampakos, Dimitris, 2016. "Developing the energy profile of mountainous areas," Energy, Elsevier, vol. 107(C), pages 205-214.
    9. Christoffer Rasmussen & Peder Bacher & Davide Calì & Henrik Aalborg Nielsen & Henrik Madsen, 2020. "Method for Scalable and Automatised Thermal Building Performance Documentation and Screening," Energies, MDPI, vol. 13(15), pages 1-23, July.
    10. Hu, Wenxuan & Scholz, Yvonne & Yeligeti, Madhura & Deng, Ying & Jochem, Patrick, 2024. "Future electricity demand for Europe: Unraveling the dynamics of the Temperature Response Function," Applied Energy, Elsevier, vol. 368(C).
    11. Huang, Lizhen & Bohne, Rolf André & Lohne, Jardar, 2015. "Shelter and residential building energy consumption within the 450 ppm CO2eq constraints in different climate zones," Energy, Elsevier, vol. 90(P1), pages 965-979.
    12. Spandagos, Constantinos & Ng, Tze Ling, 2017. "Equivalent full-load hours for assessing climate change impact on building cooling and heating energy consumption in large Asian cities," Applied Energy, Elsevier, vol. 189(C), pages 352-368.
    13. Shi, Jingcheng & Chen, Wenying & Yin, Xiang, 2016. "Modelling building’s decarbonization with application of China TIMES model," Applied Energy, Elsevier, vol. 162(C), pages 1303-1312.
    14. Chung, Mo & Park, Hwa-Choon, 2015. "Comparison of building energy demand for hotels, hospitals, and offices in Korea," Energy, Elsevier, vol. 92(P3), pages 383-393.
    15. Park, Somin & Shim, Jisoo & Song, Doosam, 2021. "Issues in calculation of balance-point temperatures for heating degree-days for the development of building-energy policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Ana M. Marina Domingo & Javier M. Rey-Hernández & Julio F. San José Alonso & Raquel Mata Crespo & Francisco J. Rey Martínez, 2018. "Energy Efficiency Analysis Carried Out by Installing District Heating on a University Campus. A Case Study in Spain," Energies, MDPI, vol. 11(10), pages 1-20, October.
    17. Khuram Pervez Amber & Muhammad Waqar Aslam & Faraz Ikram & Anila Kousar & Hafiz Muhammad Ali & Naveed Akram & Kamran Afzal & Haroon Mushtaq, 2018. "Heating and Cooling Degree-Days Maps of Pakistan," Energies, MDPI, vol. 11(1), pages 1-12, January.
    18. Jiang, Dachuan & Xiao, Weihua & Wang, Jianhua & Wang, Hao & Zhao, Yong & Li, Baoqi & Zhou, Pu, 2018. "Evaluation of the effects of one cold wave on heating energy consumption in different regions of northern China," Energy, Elsevier, vol. 142(C), pages 331-338.
    19. Yi Chen & Yinrong Chen & Kun Chen & Min Liu, 2023. "Research Progress and Hotspot Analysis of Residential Carbon Emissions Based on CiteSpace Software," IJERPH, MDPI, vol. 20(3), pages 1-19, January.
    20. Verbai, Zoltán & Kocsis, Imre & Kalmár, Ferenc, 2015. "Outdoor dry bulb heating design temperatures for Hungary," Energy, Elsevier, vol. 93(P2), pages 1404-1412.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krese, Gorazd & Lampret, Žiga & Butala, Vincenc & Prek, Matjaž, 2018. "Determination of a Building's balance point temperature as an energy characteristic," Energy, Elsevier, vol. 165(PB), pages 1034-1049.
    2. D'Amico, A. & Ciulla, G. & Panno, D. & Ferrari, S., 2019. "Building energy demand assessment through heating degree days: The importance of a climatic dataset," Applied Energy, Elsevier, vol. 242(C), pages 1285-1306.
    3. Özyurt, Ömer & Bakirci, Kadir & Erdoğan, Sadık & Yilmaz, Mehmet, 2009. "Bin weather data for the provinces of the Eastern Anatolia in Turkey," Renewable Energy, Elsevier, vol. 34(5), pages 1319-1332.
    4. Kenisarin, Murat & Kenisarina, Kamola, 2007. "Energy saving potential in the residential sector of Uzbekistan," Energy, Elsevier, vol. 32(8), pages 1319-1325.
    5. Khuram Pervez Amber & Muhammad Waqar Aslam & Faraz Ikram & Anila Kousar & Hafiz Muhammad Ali & Naveed Akram & Kamran Afzal & Haroon Mushtaq, 2018. "Heating and Cooling Degree-Days Maps of Pakistan," Energies, MDPI, vol. 11(1), pages 1-12, January.
    6. Kaynakli, O., 2008. "A study on residential heating energy requirement and optimum insulation thickness," Renewable Energy, Elsevier, vol. 33(6), pages 1164-1172.
    7. Ucar, Aynur & Balo, Figen, 2009. "Effect of fuel type on the optimum thickness of selected insulation materials for the four different climatic regions of Turkey," Applied Energy, Elsevier, vol. 86(5), pages 730-736, May.
    8. Chai, Jiale & Huang, Pei & Sun, Yongjun, 2019. "Investigations of climate change impacts on net-zero energy building lifecycle performance in typical Chinese climate regions," Energy, Elsevier, vol. 185(C), pages 176-189.
    9. Yuyu Zhou & Jiyong Eom & Leon Clarke, 2013. "The effect of global climate change, population distribution, and climate mitigation on building energy use in the U.S. and China," Climatic Change, Springer, vol. 119(3), pages 979-992, August.
    10. Kheiri, Farshad & Haberl, Jeff S. & Baltazar, Juan-Carlos, 2023. "Impact of outdoor humidity conditions on building energy performance and environmental footprint in the degree days-based climate classification," Energy, Elsevier, vol. 283(C).
    11. Dombaycı, Ö. Altan, 2009. "Degree-days maps of Turkey for various base temperatures," Energy, Elsevier, vol. 34(11), pages 1807-1812.
    12. Gelegenis, John J., 2009. "A simplified quadratic expression for the approximate estimation of heating degree-days to any base temperature," Applied Energy, Elsevier, vol. 86(10), pages 1986-1994, October.
    13. Zhang, L.Y. & Jin, L.W. & Wang, Z.N. & Zhang, J.Y. & Liu, X. & Zhang, L.H., 2017. "Effects of wall configuration on building energy performance subject to different climatic zones of China," Applied Energy, Elsevier, vol. 185(P2), pages 1565-1573.
    14. Yu, Sha & Eom, Jiyong & Zhou, Yuyu & Evans, Meredydd & Clarke, Leon, 2014. "Scenarios of building energy demand for China with a detailed regional representation," Energy, Elsevier, vol. 67(C), pages 284-297.
    15. Anna Laura Pisello & Gloria Pignatta & Veronica Lucia Castaldo & Franco Cotana, 2015. "The Impact of Local Microclimate Boundary Conditions on Building Energy Performance," Sustainability, MDPI, vol. 7(7), pages 1-24, July.
    16. Yang, Liu & Lam, Joseph C. & Tsang, C.L., 2008. "Energy performance of building envelopes in different climate zones in China," Applied Energy, Elsevier, vol. 85(9), pages 800-817, September.
    17. Mehleri, Eugenia D. & Sarimveis, Haralambos & Markatos, Nikolaos C. & Papageorgiou, Lazaros G., 2012. "A mathematical programming approach for optimal design of distributed energy systems at the neighbourhood level," Energy, Elsevier, vol. 44(1), pages 96-104.
    18. Katerina Tsikaloudaki & Kostas Laskos & Dimitrios Bikas, 2011. "On the Establishment of Climatic Zones in Europe with Regard to the Energy Performance of Buildings," Energies, MDPI, vol. 5(1), pages 1-13, December.
    19. Coskun, C., 2010. "A novel approach to degree-hour calculation: Indoor and outdoor reference temperature based degree-hour calculation," Energy, Elsevier, vol. 35(6), pages 2455-2460.
    20. Al-Hadhrami, L.M., 2013. "Comprehensive review of cooling and heating degree days characteristics over Kingdom of Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 305-314.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:76:y:2014:i:c:p:780-787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.