IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i7p1353-d221030.html
   My bibliography  Save this article

A Method for Rapid Evaluation of Thermal Performance of Wall Assemblies Based on Geographical Location

Author

Listed:
  • Jan Kočí

    (Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, 166 29 Prague 6, Czech Republic)

  • Václav Kočí

    (Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, 166 29 Prague 6, Czech Republic)

  • Robert Černý

    (Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, 166 29 Prague 6, Czech Republic)

Abstract

In this study, we present a method for the rapid evaluation of thermal performance of building envelopes without the need of using sophisticated and time-consuming computational modeling. The proposed approach is based on the prediction of monthly energy balances per unit area of a wall assembly using monthly averages of temperature and relative humidity, as well as the elevation of a building’s location. Contrary to most other methods, the obtained results include how moisture content in the wall effects its thermal performance. The developed formulas for calculation of monthly energy balances are verified for nine commonly used wall assemblies in Central Europe in 10 randomly selected locations. The observed agreement of the predicated data was determined using advanced finite-element simulation tools and hourly climatic data, which makes for good prerequisites for the further application of the method in both research and building practices.

Suggested Citation

  • Jan Kočí & Václav Kočí & Robert Černý, 2019. "A Method for Rapid Evaluation of Thermal Performance of Wall Assemblies Based on Geographical Location," Energies, MDPI, vol. 12(7), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1353-:d:221030
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/7/1353/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/7/1353/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Szodrai, Ferenc & Lakatos, Ákos & Kalmár, Ferenc, 2016. "Analysis of the change of the specific heat loss coefficient of buildings resulted by the variation of the geometry and the moisture load," Energy, Elsevier, vol. 115(P1), pages 820-829.
    2. Kruis, Jaroslav & Koudelka, Tomáš & Krejčí, Tomáš, 2010. "Efficient computer implementation of coupled hydro-thermo-mechanical analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(8), pages 1578-1588.
    3. Cansino, José M. & Pablo-Romero, María del P. & Román, Rocío & Yñiguez, Rocío, 2011. "Promoting renewable energy sources for heating and cooling in EU-27 countries," Energy Policy, Elsevier, vol. 39(6), pages 3803-3812, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Fořt & Jan Kočí & Jaroslav Pokorný & Robert Černý, 2020. "Influence of Superabsorbent Polymers on Moisture Control in Building Interiors," Energies, MDPI, vol. 13(8), pages 1-13, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kočí, Jan & Černý, Robert, 2022. "A design of a semi-virtual calibration experiment for a sensitivity enhancement of general-purpose heat flow meters applied in residential buildings," Energy, Elsevier, vol. 261(PA).
    2. Jānis Krūmiņš & Māris Kļaviņš, 2023. "Investigating the Potential of Nuclear Energy in Achieving a Carbon-Free Energy Future," Energies, MDPI, vol. 16(9), pages 1-31, April.
    3. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    4. Dorothée Charlier & Mouez Fodha & Djamel Kirat, 2023. "Residential CO2 Emissions in Europe and Carbon Taxation: A Country-Level Assessment," The Energy Journal, , vol. 44(5), pages 187-206, September.
    5. Cansino, J.M. & Pablo-Romero, M.del P & Román, R. & Yñiguez, R., 2012. "Promotion of biofuel consumption in the transport sector: An EU-27 perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6013-6021.
    6. José M. Cansino & Antonio Sánchez-Braza & Teresa Sanz-Díaz, 2018. "Policy Instruments to Promote Electro-Mobility in the EU28: A Comprehensive Review," Sustainability, MDPI, vol. 10(7), pages 1-27, July.
    7. Seyithan Ahmet Ate, 2013. "A Novel Approach to Development of Renewable Heating Support Policies in Turkey," International Journal of Energy Economics and Policy, Econjournals, vol. 3(Special), pages 115-126.
    8. Sánchez-Braza, Antonio & Pablo-Romero, María del P., 2014. "Evaluation of property tax bonus to promote solar thermal systems in Andalusia (Spain)," Energy Policy, Elsevier, vol. 67(C), pages 832-843.
    9. Xu, Xin & You, Shijun & Zheng, Xuejing & Li, Han, 2014. "A survey of district heating systems in the heating regions of northern China," Energy, Elsevier, vol. 77(C), pages 909-925.
    10. He, Guoqing & Zheng, Yun & Wu, Yong & Cui, Zhenhua & Qian, Kuangliang, 2015. "Promotion of building-integrated solar water heaters in urbanized areas in China: Experience, potential, and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 643-656.
    11. Václav Kočí & Jan Kočí & Jiří Maděra & Jaroslav Žák & Robert Černý, 2020. "Computational Prediction of Susceptibility to Biofilms Growth: Two-Dimensional Analysis of Critical Construction Details," Energies, MDPI, vol. 13(2), pages 1-17, January.
    12. Annunziata, Eleonora & Frey, Marco & Rizzi, Francesco, 2013. "Towards nearly zero-energy buildings: The state-of-art of national regulations in Europe," Energy, Elsevier, vol. 57(C), pages 125-133.
    13. Klevas, Valentinas & Murauskaite, Lina & Kleviene, Audrone & Perednis, Eugenijus, 2013. "Measures for increasing demand of solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 55-64.
    14. Monica Castaneda & Sebastian Zapata & Andres Aristizabal, 2018. "Assessing the Effect of Incentive Policies on Residential PV Investments in Colombia," Energies, MDPI, vol. 11(10), pages 1-17, October.
    15. Gábor L. Szabó, 2020. "Thermo-Chemical Instability and Energy Analysis of Absorption Heat Pumps," Energies, MDPI, vol. 13(8), pages 1-13, April.
    16. Kranzl, Lukas & Kalt, Gerald & Müller, Andreas & Hummel, Marcus & Egger, Christiane & Öhlinger, Christine & Dell, Gerhard, 2013. "Renewable energy in the heating sector in Austria with particular reference to the region of Upper Austria," Energy Policy, Elsevier, vol. 59(C), pages 17-31.
    17. Liu, Shiyu & Bie, Zhaohong & Lin, Jiang & Wang, Xifan, 2018. "Curtailment of renewable energy in Northwest China and market-based solutions," Energy Policy, Elsevier, vol. 123(C), pages 494-502.
    18. Kočí, Jan & Kočí, Václav & Maděra, Jiří & Černý, Robert, 2019. "Effect of applied weather data sets in simulation of building energy demands: Comparison of design years with recent weather data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 22-32.
    19. András Mezősi & Enikő Kácsor & à kos Beöthy & à gnes Törőcsik & László Szabó, 2017. "Modelling support policies and renewable energy sources deployment in the Hungarian district heating sector," Energy & Environment, , vol. 28(1-2), pages 70-87, March.
    20. Wang, Kui & Zhang, Yuanyuan & Sekelj, Gasper & Hopke, Philip K., 2019. "Economic analysis of a field monitored residential wood pellet boiler heating system in New York State," Renewable Energy, Elsevier, vol. 133(C), pages 500-511.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1353-:d:221030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.