IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p6961-d922637.html
   My bibliography  Save this article

Indoor Air CO 2 Sensors and Possible Uncertainties of Measurements: A Review and an Example of Practical Measurements

Author

Listed:
  • Anatolijs Borodinecs

    (Department of Heat Engineering and Technology, Riga Technical University, Kipsalas Street 6 A, 1048 Riga, Latvia)

  • Arturs Palcikovskis

    (Department of Heat Engineering and Technology, Riga Technical University, Kipsalas Street 6 A, 1048 Riga, Latvia)

  • Vladislavs Jacnevs

    (Department of Heat Engineering and Technology, Riga Technical University, Kipsalas Street 6 A, 1048 Riga, Latvia)

Abstract

Since the COVID-19 outbreak, special attention has been paid to proper ventilation and building management systems. The indoor air CO 2 concentration level is still used as an effective indicator to evaluate indoor air quality. Many different sensors have appeared on the market in the last two years. However, calibration procedures and guidance on proper installation have not been well described by manufacturers. The research method is based on a review of technical parameters. The practical measurements of CO 2 concentration were taken using different sensors. For these purposes three different premises were selected. It was found that CO 2 measurement failure happened in residential buildings without mechanical ventilation. Meanwhile, in well ventilated buildings all sensors have shown similar results and the difference between sensors located in different zones was minimal.

Suggested Citation

  • Anatolijs Borodinecs & Arturs Palcikovskis & Vladislavs Jacnevs, 2022. "Indoor Air CO 2 Sensors and Possible Uncertainties of Measurements: A Review and an Example of Practical Measurements," Energies, MDPI, vol. 15(19), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:6961-:d:922637
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/6961/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/6961/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Szodrai, Ferenc & Lakatos, Ákos & Kalmár, Ferenc, 2016. "Analysis of the change of the specific heat loss coefficient of buildings resulted by the variation of the geometry and the moisture load," Energy, Elsevier, vol. 115(P1), pages 820-829.
    2. Alexandre Correia & Luís Miguel Ferreira & Paulo Coimbra & Pedro Moura & Aníbal T. de Almeida, 2022. "Smart Thermostats for a Campus Microgrid: Demand Control and Improving Air Quality," Energies, MDPI, vol. 15(4), pages 1-21, February.
    3. Mathews, E. H. & Arndt, D. C. & Piani, C. B. & van Heerden, E., 2000. "Developing cost efficient control strategies to ensure optimal energy use and sufficient indoor comfort," Applied Energy, Elsevier, vol. 66(2), pages 135-159, June.
    4. Ramadas Narayanan & Abeer Abdullah Al Anazi & Roberto Pippia & Mohammad G. Rasul, 2022. "Solar Desiccant Cooling System for a Commercial Building in Kuwait’s Climatic Condition," Energies, MDPI, vol. 15(11), pages 1-13, June.
    5. Qianqian Zhao & Junzhen Li & Roman Fediuk & Sergey Klyuev & Darya Nemova, 2021. "Benefit Evaluation Model of Prefabricated Buildings in Seasonally Frozen Regions," Energies, MDPI, vol. 14(21), pages 1-18, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amjad Almusaed & Ibrahim Yitmen & Asaad Almssad, 2023. "Enhancing Smart Home Design with AI Models: A Case Study of Living Spaces Implementation Review," Energies, MDPI, vol. 16(6), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Huaxia & Pan, Yan & Li, Zhao & Deng, Shiming, 2018. "Further development of a thermal comfort based fuzzy logic controller for a direct expansion air conditioning system," Applied Energy, Elsevier, vol. 219(C), pages 312-324.
    2. Alexandre F. M. Correia & Pedro Moura & Aníbal T. de Almeida, 2022. "Technical and Economic Assessment of Battery Storage and Vehicle-to-Grid Systems in Building Microgrids," Energies, MDPI, vol. 15(23), pages 1-23, November.
    3. Gábor L. Szabó, 2020. "Thermo-Chemical Instability and Energy Analysis of Absorption Heat Pumps," Energies, MDPI, vol. 13(8), pages 1-13, April.
    4. Baldi, Simone & Korkas, Christos D. & Lv, Maolong & Kosmatopoulos, Elias B., 2018. "Automating occupant-building interaction via smart zoning of thermostatic loads: A switched self-tuning approach," Applied Energy, Elsevier, vol. 231(C), pages 1246-1258.
    5. Mossolly, M. & Ghali, K. & Ghaddar, N., 2009. "Optimal control strategy for a multi-zone air conditioning system using a genetic algorithm," Energy, Elsevier, vol. 34(1), pages 58-66.
    6. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Akinola, O.A., 2017. "User satisfaction-induced demand side load management in residential buildings with user budget constraint," Applied Energy, Elsevier, vol. 187(C), pages 352-366.
    7. Kusiak, Andrew & Tang, Fan & Xu, Guanglin, 2011. "Multi-objective optimization of HVAC system with an evolutionary computation algorithm," Energy, Elsevier, vol. 36(5), pages 2440-2449.
    8. Moudgil, Vipul & Hewage, Kasun & Hussain, Syed Asad & Sadiq, Rehan, 2023. "Integration of IoT in building energy infrastructure: A critical review on challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    9. Bastien, Diane & Winther-Gaasvig, Martin, 2018. "Influence of driving rain and vapour diffusion on the hygrothermal performance of a hygroscopic and permeable building envelope," Energy, Elsevier, vol. 164(C), pages 288-297.
    10. Evi Lambie & Dirk Saelens, 2020. "Identification of the Building Envelope Performance of a Residential Building: A Case Study," Energies, MDPI, vol. 13(10), pages 1-28, May.
    11. Attila Kostyák & Csaba Béres & Szabolcs Szekeres & Imre Csáky, 2022. "Buffer Tank Discharge Strategies in the Case of a Centrifugal Water Chiller," Energies, MDPI, vol. 16(1), pages 1-15, December.
    12. Anghel, E.M. & Pavel, P.M. & Constantinescu, M. & Petrescu, S. & Atkinson, I. & Buixaderas, E., 2017. "Thermal transfer performance of a spherical encapsulated PEG 6000-based composite for thermal energy storage," Applied Energy, Elsevier, vol. 208(C), pages 1222-1231.
    13. Baldi, Simone & Zhang, Fan & Le Quang, Thuan & Endel, Petr & Holub, Ondrej, 2019. "Passive versus active learning in operation and adaptive maintenance of Heating, Ventilation, and Air Conditioning," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    14. Ifrah Tahir & Ali Nasir & Abdullah Algethami, 2022. "Optimal Control Policy for Energy Management of a Commercial Bank," Energies, MDPI, vol. 15(6), pages 1-19, March.
    15. Baldi, Simone & Yuan, Shuai & Endel, Petr & Holub, Ondrej, 2016. "Dual estimation: Constructing building energy models from data sampled at low rate," Applied Energy, Elsevier, vol. 169(C), pages 81-92.
    16. Edrees Yahya Alhawsawi & Khaled Salhein & Mohamed A. Zohdy, 2024. "A Comprehensive Review of Existing and Pending University Campus Microgrids," Energies, MDPI, vol. 17(10), pages 1-29, May.
    17. Jan Kočí & Václav Kočí & Robert Černý, 2019. "A Method for Rapid Evaluation of Thermal Performance of Wall Assemblies Based on Geographical Location," Energies, MDPI, vol. 12(7), pages 1-16, April.
    18. Shaikh, Pervez Hameed & Nor, Nursyarizal Bin Mohd & Nallagownden, Perumal & Elamvazuthi, Irraivan & Ibrahim, Taib, 2014. "A review on optimized control systems for building energy and comfort management of smart sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 409-429.
    19. Aste, Niccolò & Manfren, Massimiliano & Marenzi, Giorgia, 2017. "Building Automation and Control Systems and performance optimization: A framework for analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 313-330.
    20. Kusiak, Andrew & Li, Mingyang, 2010. "Cooling output optimization of an air handling unit," Applied Energy, Elsevier, vol. 87(3), pages 901-909, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:6961-:d:922637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.