IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v89y2018icp249-260.html
   My bibliography  Save this article

Building information modeling for energy retrofitting – A review

Author

Listed:
  • Sanhudo, Luís
  • Ramos, Nuno M.M.
  • Poças Martins, João
  • Almeida, Ricardo M.S.F.
  • Barreira, Eva
  • Simões, M. Lurdes
  • Cardoso, Vítor

Abstract

Building Information Modeling (BIM), as a rising technology in the Architecture, Engineering and Construction (AEC) industry, has been applied to various research topics from project planning, structural design, facility management, among others. Furthermore, with the increasing demand for energy efficiency, the AEC industry requires an expeditious energy retrofit of the existing building stock to successfully achieve the 2020 Energy Strategy targets.

Suggested Citation

  • Sanhudo, Luís & Ramos, Nuno M.M. & Poças Martins, João & Almeida, Ricardo M.S.F. & Barreira, Eva & Simões, M. Lurdes & Cardoso, Vítor, 2018. "Building information modeling for energy retrofitting – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 249-260.
  • Handle: RePEc:eee:rensus:v:89:y:2018:i:c:p:249-260
    DOI: 10.1016/j.rser.2018.03.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118301503
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.03.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abanda, F.H. & Byers, L., 2016. "An investigation of the impact of building orientation on energy consumption in a domestic building using emerging BIM (Building Information Modelling)," Energy, Elsevier, vol. 97(C), pages 517-527.
    2. Méndez Echenagucia, Tomás & Capozzoli, Alfonso & Cascone, Ylenia & Sassone, Mario, 2015. "The early design stage of a building envelope: Multi-objective search through heating, cooling and lighting energy performance analysis," Applied Energy, Elsevier, vol. 154(C), pages 577-591.
    3. Evonne Miller & Laurie Buys, 2008. "Retrofitting commercial office buildings for sustainability: tenants' perspectives," Journal of Property Investment & Finance, Emerald Group Publishing Limited, vol. 26(6), pages 552-561, September.
    4. Harmathy, Norbert & Magyar, Zoltán & Folić, Radomir, 2016. "Multi-criterion optimization of building envelope in the function of indoor illumination quality towards overall energy performance improvement," Energy, Elsevier, vol. 114(C), pages 302-317.
    5. Asdrubali, Francesco & Baldinelli, Giorgio & Bianchi, Francesco, 2012. "A quantitative methodology to evaluate thermal bridges in buildings," Applied Energy, Elsevier, vol. 97(C), pages 365-373.
    6. Goia, Francesco & Haase, Matthias & Perino, Marco, 2013. "Optimizing the configuration of a façade module for office buildings by means of integrated thermal and lighting simulations in a total energy perspective," Applied Energy, Elsevier, vol. 108(C), pages 515-527.
    7. Nagy, Zoltán & Rossi, Dino & Hersberger, Christian & Irigoyen, Silvia Domingo & Miller, Clayton & Schlueter, Arno, 2014. "Balancing envelope and heating system parameters for zero emissions retrofit using building sensor data," Applied Energy, Elsevier, vol. 131(C), pages 56-66.
    8. Ramos, Greici & Ghisi, Enedir, 2010. "Analysis of daylight calculated using the EnergyPlus programme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1948-1958, September.
    9. Fokaides, Paris A. & Kalogirou, Soteris A., 2011. "Application of infrared thermography for the determination of the overall heat transfer coefficient (U-Value) in building envelopes," Applied Energy, Elsevier, vol. 88(12), pages 4358-4365.
    10. Gourlis, Georgios & Kovacic, Iva, 2017. "Building Information Modelling for analysis of energy efficient industrial buildings – A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 953-963.
    11. Ma, Peizheng & Wang, Lin-Shu & Guo, Nianhua, 2015. "Maximum window-to-wall ratio of a thermally autonomous building as a function of envelope U-value and ambient temperature amplitude," Applied Energy, Elsevier, vol. 146(C), pages 84-91.
    12. Amstalden, Roger W. & Kost, Michael & Nathani, Carsten & Imboden, Dieter M., 2007. "Economic potential of energy-efficient retrofitting in the Swiss residential building sector: The effects of policy instruments and energy price expectations," Energy Policy, Elsevier, vol. 35(3), pages 1819-1829, March.
    13. Santamouris, M. & Pavlou, C. & Doukas, P. & Mihalakakou, G. & Synnefa, A. & Hatzibiros, A. & Patargias, P., 2007. "Investigating and analysing the energy and environmental performance of an experimental green roof system installed in a nursery school building in Athens, Greece," Energy, Elsevier, vol. 32(9), pages 1781-1788.
    14. Gourlis, Georgios & Kovacic, Iva, 2016. "A study on building performance analysis for energy retrofit of existing industrial facilities," Applied Energy, Elsevier, vol. 184(C), pages 1389-1399.
    15. Capeluto, I. Guedi & Ochoa, Carlos E., 2014. "Simulation-based method to determine climatic energy strategies of an adaptable building retrofit façade system," Energy, Elsevier, vol. 76(C), pages 375-384.
    16. Evins, Ralph, 2015. "Multi-level optimization of building design, energy system sizing and operation," Energy, Elsevier, vol. 90(P2), pages 1775-1789.
    17. Chidiac, S.E. & Catania, E.J.C. & Morofsky, E. & Foo, S., 2011. "Effectiveness of single and multiple energy retrofit measures on the energy consumption of office buildings," Energy, Elsevier, vol. 36(8), pages 5037-5052.
    18. Eleftheriadis, Stathis & Mumovic, Dejan & Greening, Paul, 2017. "Life cycle energy efficiency in building structures: A review of current developments and future outlooks based on BIM capabilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 811-825.
    19. Aviel Verbruggen, 2008. "Retrofit of a century old land-house to a low-energy house," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 9(4), pages 402-412.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xun Liu & Zhenhan Ding & Xiaobo Li & Zhiyuan Xue, 2023. "Research Progress, Hotspots, and Trends of Using BIM to Reduce Building Energy Consumption: Visual Analysis Based on WOS Database," IJERPH, MDPI, vol. 20(4), pages 1-21, February.
    2. Azraff Bin Rozmi, Mohd Daniel & Thirunavukkarasu, Gokul Sidarth & Jamei, Elmira & Seyedmahmoudian, Mehdi & Mekhilef, Saad & Stojcevski, Alex & Horan, Ben, 2019. "Role of immersive visualization tools in renewable energy system development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Ali, Usman & Shamsi, Mohammad Haris & Bohacek, Mark & Hoare, Cathal & Purcell, Karl & Mangina, Eleni & O’Donnell, James, 2020. "A data-driven approach to optimize urban scale energy retrofit decisions for residential buildings," Applied Energy, Elsevier, vol. 267(C).
    4. Patricia Tzortzopoulos & Ling Ma & João Soliman Junior & Lauri Koskela, 2019. "Evaluating Social Housing Retrofit Options to Support Clients’ Decision Making—SIMPLER BIM Protocol," Sustainability, MDPI, vol. 11(9), pages 1-21, April.
    5. João M. P. Q. Delgado & Ana S. Guimarães & João Poças Martins & Diogo F. R. Parracho & Sara S. Freitas & António G. B. Lima & Leonardo Rodrigues, 2023. "BIM and BEM Interoperability–Evaluation of a Case Study in Modular Wooden Housing," Energies, MDPI, vol. 16(4), pages 1-21, February.
    6. Ana Paola Vargas & Leon Hamui, 2021. "Thermal Energy Performance Simulation of a Residential Building Retrofitted with Passive Design Strategies: A Case Study in Mexico," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
    7. Ahmed, Wahhaj & Asif, Muhammad, 2021. "A critical review of energy retrofitting trends in residential buildings with particular focus on the GCC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    8. Linfeng Zou & Weimin Gui, 2020. "Simulation and prediction of geologic hazards and the impacts on homestay buildings in scenery spots through BIM," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-14, September.
    9. Liu, Bokai & Penaka, Santhan Reddy & Lu, Weizhuo & Feng, Kailun & Rebbling, Anders & Olofsson, Thomas, 2023. "Data-driven quantitative analysis of an integrated open digital ecosystems platform for user-centric energy retrofits: A case study in northern Sweden," Technology in Society, Elsevier, vol. 75(C).
    10. Salata, Ferdinando & Ciancio, Virgilio & Dell'Olmo, Jacopo & Golasi, Iacopo & Palusci, Olga & Coppi, Massimo, 2020. "Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms," Applied Energy, Elsevier, vol. 260(C).
    11. Sanjin Gumbarević & Ivana Burcar Dunović & Bojan Milovanović & Mergim Gaši, 2020. "Method for Building Information Modeling Supported Project Control of Nearly Zero-Energy Building Delivery," Energies, MDPI, vol. 13(20), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harmathy, Norbert & Magyar, Zoltán & Folić, Radomir, 2016. "Multi-criterion optimization of building envelope in the function of indoor illumination quality towards overall energy performance improvement," Energy, Elsevier, vol. 114(C), pages 302-317.
    2. Giacomo Chiesa & Andrea Acquaviva & Mario Grosso & Lorenzo Bottaccioli & Maurizio Floridia & Edoardo Pristeri & Edoardo Maria Sanna, 2019. "Parametric Optimization of Window-to-Wall Ratio for Passive Buildings Adopting A Scripting Methodology to Dynamic-Energy Simulation," Sustainability, MDPI, vol. 11(11), pages 1-30, May.
    3. Fernandes, Marco S. & Rodrigues, Eugénio & Gaspar, Adélio Rodrigues & Costa, José J. & Gomes, Álvaro, 2019. "The impact of thermal transmittance variation on building design in the Mediterranean region," Applied Energy, Elsevier, vol. 239(C), pages 581-597.
    4. Ascione, Fabrizio & Bianco, Nicola & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2019. "A new comprehensive framework for the multi-objective optimization of building energy design: Harlequin," Applied Energy, Elsevier, vol. 241(C), pages 331-361.
    5. Xue, Peng & Li, Qian & Xie, Jingchao & Zhao, Mengjing & Liu, Jiaping, 2019. "Optimization of window-to-wall ratio with sunshades in China low latitude region considering daylighting and energy saving requirements," Applied Energy, Elsevier, vol. 233, pages 62-70.
    6. Gao, Hao & Koch, Christian & Wu, Yupeng, 2019. "Building information modelling based building energy modelling: A review," Applied Energy, Elsevier, vol. 238(C), pages 320-343.
    7. Carlos Morón & Pablo Saiz & Daniel Ferrández & Rubén Felices, 2018. "Comparative Analysis of Infrared Thermography and CFD Modelling for Assessing the Thermal Performance of Buildings," Energies, MDPI, vol. 11(3), pages 1-19, March.
    8. Kamel, Ehsan & Memari, Ali M., 2018. "Automated Building Energy Modeling and Assessment Tool (ABEMAT)," Energy, Elsevier, vol. 147(C), pages 15-24.
    9. Kylili, Angeliki & Fokaides, Paris A. & Christou, Petros & Kalogirou, Soteris A., 2014. "Infrared thermography (IRT) applications for building diagnostics: A review," Applied Energy, Elsevier, vol. 134(C), pages 531-549.
    10. Fokaides, Paris A. & Jurelionis, Andrius & Gagyte, Laura & Kalogirou, Soteris A., 2016. "Mock target IR thermography for indoor air temperature measurement," Applied Energy, Elsevier, vol. 164(C), pages 676-685.
    11. Blanca Tejedor & Eva Barreira & Vasco Peixoto de Freitas & Tomasz Kisilewicz & Katarzyna Nowak-Dzieszko & Umberto Berardi, 2020. "Impact of Stationary and Dynamic Conditions on the U-Value Measurements of Heavy-Multi Leaf Walls by Quantitative IRT," Energies, MDPI, vol. 13(24), pages 1-19, December.
    12. Taveres-Cachat, Ellika & Lobaccaro, Gabriele & Goia, Francesco & Chaudhary, Gaurav, 2019. "A methodology to improve the performance of PV integrated shading devices using multi-objective optimization," Applied Energy, Elsevier, vol. 247(C), pages 731-744.
    13. Singh, Ramkishore & Lazarus, I.J. & Kishore, V.V.N., 2015. "Effect of internal woven roller shade and glazing on the energy and daylighting performances of an office building in the cold climate of Shillong," Applied Energy, Elsevier, vol. 159(C), pages 317-333.
    14. George M. Stavrakakis & Dimitris Al. Katsaprakakis & Markos Damasiotis, 2021. "Basic Principles, Most Common Computational Tools, and Capabilities for Building Energy and Urban Microclimate Simulations," Energies, MDPI, vol. 14(20), pages 1-41, October.
    15. Wang, Xiaotong & Lu, Meijun & Mao, Wei & Ouyang, Jinlong & Zhou, Bo & Yang, Yunkai, 2015. "Improving benefit-cost analysis to overcome financing difficulties in promoting energy-efficient renovation of existing residential buildings in China," Applied Energy, Elsevier, vol. 141(C), pages 119-130.
    16. O'Grady, Małgorzata & Lechowska, Agnieszka A. & Harte, Annette M., 2017. "Quantification of heat losses through building envelope thermal bridges influenced by wind velocity using the outdoor infrared thermography technique," Applied Energy, Elsevier, vol. 208(C), pages 1038-1052.
    17. José Pedro Carvalho & Fernanda Schmitd Villaschi & Luís Bragança, 2021. "Assessing Life Cycle Environmental and Economic Impacts of Building Construction Solutions with BIM," Sustainability, MDPI, vol. 13(16), pages 1-23, August.
    18. Xin Liang & Tao Yu & Li Guo, 2017. "Understanding Stakeholders’ Influence on Project Success with a New SNA Method: A Case Study of the Green Retrofit in China," Sustainability, MDPI, vol. 9(10), pages 1-19, October.
    19. Jagarajan, Rehmaashini & Abdullah Mohd Asmoni, Mat Naim & Mohammed, Abdul Hakim & Jaafar, Mohd Nadzri & Lee Yim Mei, Janice & Baba, Maizan, 2017. "Green retrofitting – A review of current status, implementations and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1360-1368.
    20. Favoino, Fabio & Fiorito, Francesco & Cannavale, Alessandro & Ranzi, Gianluca & Overend, Mauro, 2016. "Optimal control and performance of photovoltachromic switchable glazing for building integration in temperate climates," Applied Energy, Elsevier, vol. 178(C), pages 943-961.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:89:y:2018:i:c:p:249-260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.