IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v114y2016icp1207-1213.html
   My bibliography  Save this article

Economic efficiency analysis of substitute natural gas (SNG) production in steam gasification of coal with the utilization of HTR excess heat

Author

Listed:
  • Krawczyk, Piotr
  • Howaniec, Natalia
  • Smoliński, Adam

Abstract

The concept of coal-nuclear synergy assumes the utilization of excess heat from high temperature nuclear reactors in gasification technologies, which will contribute to increased process efficiency and the reduction of atmospheric CO2 emissions. The purpose of this paper was to analyze the feasibility of substitute natural gas generation in the process of steam gasification of coal with the utilization of high temperature nuclear reactors excess heat by means of the United Nations Industrial Development Organization methodology. The sensitivity analysis of the technology proved that market prices (the volume of income) and capital expenditures (both their volume and the fact that they are spent at the beginning of the investment) have the largest impact on the economic efficiency of the technology examined in this study. The study demonstrated that it is possible to achieve economic efficiency of the system analyzed only in case of a 50% increase in substitute natural gas prices, in relation to current market prices, to the level of approximately 0.50 Euro/m3.

Suggested Citation

  • Krawczyk, Piotr & Howaniec, Natalia & Smoliński, Adam, 2016. "Economic efficiency analysis of substitute natural gas (SNG) production in steam gasification of coal with the utilization of HTR excess heat," Energy, Elsevier, vol. 114(C), pages 1207-1213.
  • Handle: RePEc:eee:energy:v:114:y:2016:i:c:p:1207-1213
    DOI: 10.1016/j.energy.2016.08.088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216312014
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.08.088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cormos, Calin-Cristian, 2012. "Integrated assessment of IGCC power generation technology with carbon capture and storage (CCS)," Energy, Elsevier, vol. 42(1), pages 434-445.
    2. Inaba, Yoshitomo & Fumizawa, Motoo & Tonogouchi, Makoto & Takenaka, Yutaka, 2000. "Coal gasification system using nuclear heat for ammonia production," Applied Energy, Elsevier, vol. 67(4), pages 395-406, December.
    3. Howaniec, Natalia & Smoliński, Adam & Cempa-Balewicz, Magdalena, 2015. "Experimental study on application of high temperature reactor excess heat in the process of coal and biomass co-gasification to hydrogen-rich gas," Energy, Elsevier, vol. 84(C), pages 455-461.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiang, Dong & Jin, Tong & Lei, Xinru & Liu, Shuai & Jiang, Yong & Dong, Zhongbing & Tao, Quanbao & Cao, Yan, 2018. "The high efficient synthesis of natural gas from a joint-feedstock of coke-oven gas and pulverized coke via a chemical looping combustion scheme," Applied Energy, Elsevier, vol. 212(C), pages 944-954.
    2. Anna Śliwińska & Aleksandra Strugała-Wilczek & Piotr Krawczyk & Agnieszka Leśniak & Tomasz Urych & Jarosław Chećko & Krzysztof Stańczyk, 2022. "Carbon Capture Utilisation and Storage Technology Development in a Region with High CO 2 Emissions and Low Storage Potential—A Case Study of Upper Silesia in Poland," Energies, MDPI, vol. 15(12), pages 1-20, June.
    3. Anna Musz-Pomorska & Marcin K. Widomski & Justyna Gołębiowska, 2024. "Financial Aspects of Sustainable Rainwater Management in Small-Scale Urban Housing Communities," Sustainability, MDPI, vol. 16(2), pages 1-21, January.
    4. Janusz Zdeb & Natalia Howaniec, 2022. "Energy Sector Derived Combustion Products Utilization—Current Advances in Carbon Dioxide Mineralization," Energies, MDPI, vol. 15(23), pages 1-28, November.
    5. Yang, Qingchun & Yang, Qing & Xu, Simin & Zhang, Dawei & Liu, Chengling & Zhou, Huairong, 2021. "Optimal design, exergy and economic analyses of coal-to-ethylene glycol process coupling different shale gas reforming technologies," Energy, Elsevier, vol. 228(C).
    6. Smoliński, Adam & Howaniec, Natalia, 2023. "Experimental investigation and chemometric analysis of gasification and co-gasification of olive pomace and Sida Hermaphrodita blends with sewage sludge to hydrogen-rich gas," Energy, Elsevier, vol. 284(C).
    7. Chen, Jianjun & Yang, Siyu & Qian, Yu, 2019. "A novel path for carbon-rich resource utilization with lower emission and higher efficiency: An integrated process of coal gasification and coking to methanol production," Energy, Elsevier, vol. 177(C), pages 304-318.
    8. Xiang, Dong & Xiang, Junjie & Sun, Zhe & Cao, Yan, 2017. "The integrated coke-oven gas and pulverized coke gasification for methanol production with highly efficient hydrogen utilization," Energy, Elsevier, vol. 140(P1), pages 78-91.
    9. Małgorzata Magdziarczyk & Andrzej Chmiela & Weijian Su & Adam Smolinski, 2024. "Green Transformation of Mining towards Energy Self-Sufficiency in a Circular Economy—A Case Study," Energies, MDPI, vol. 17(15), pages 1-13, July.
    10. Liu, Huan & Guo, Wei & Liu, Shuqin, 2022. "Comparative techno-economic performance analysis of underground coal gasification and surface coal gasification based coal-to-hydrogen process," Energy, Elsevier, vol. 258(C).
    11. Smoliński, Adam & Howaniec, Natalia & Gąsior, Rafał & Polański, Jarosław & Magdziarczyk, Małgorzata, 2021. "Hydrogen rich gas production through co-gasification of low rank coal, flotation concentrates and municipal refuse derived fuel," Energy, Elsevier, vol. 235(C).
    12. Xiang, Dong & Zhou, Yunpeng, 2018. "Concept design and techno-economic performance of hydrogen and ammonia co-generation by coke-oven gas-pressure swing adsorption integrated with chemical looping hydrogen process," Applied Energy, Elsevier, vol. 229(C), pages 1024-1034.
    13. Piotr Krawczyk & Anna Śliwińska, 2020. "Eco-Efficiency Assessment of the Application of Large-Scale Rechargeable Batteries in a Coal-Fired Power Plant," Energies, MDPI, vol. 13(6), pages 1-16, March.
    14. Zhou, Huairong & Meng, Wenliang & Wang, Dongliang & Li, Guixian & Li, Hongwei & Liu, Zhiqiang & Yang, Sheng, 2021. "A novel coal chemical looping gasification scheme for synthetic natural gas with low energy consumption for CO2 capture: Modelling, parameters optimization, and performance analysis," Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igor Donskoy, 2023. "Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture," Clean Technol., MDPI, vol. 5(1), pages 1-18, February.
    2. Janusz Zdeb & Natalia Howaniec & Adam Smoliński, 2019. "Utilization of Carbon Dioxide in Coal Gasification—An Experimental Study," Energies, MDPI, vol. 12(1), pages 1-12, January.
    3. Li, Guoxuan & Wang, Shuai & Zhao, Jiangang & Qi, Huaqing & Ma, Zhaoyuan & Cui, Peizhe & Zhu, Zhaoyou & Gao, Jun & Wang, Yinglong, 2020. "Life cycle assessment and techno-economic analysis of biomass-to-hydrogen production with methane tri-reforming," Energy, Elsevier, vol. 199(C).
    4. Verma, Aman & Kumar, Amit, 2015. "Life cycle assessment of hydrogen production from underground coal gasification," Applied Energy, Elsevier, vol. 147(C), pages 556-568.
    5. Cormos, Calin-Cristian, 2014. "Economic evaluations of coal-based combustion and gasification power plants with post-combustion CO2 capture using calcium looping cycle," Energy, Elsevier, vol. 78(C), pages 665-673.
    6. Barelli, L. & Ottaviano, A., 2014. "Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced CO2 emissions," Energy, Elsevier, vol. 71(C), pages 118-129.
    7. Xiang, Dong & Xiang, Junjie & Sun, Zhe & Cao, Yan, 2017. "The integrated coke-oven gas and pulverized coke gasification for methanol production with highly efficient hydrogen utilization," Energy, Elsevier, vol. 140(P1), pages 78-91.
    8. Cormos, Calin-Cristian, 2023. "Green hydrogen production from decarbonized biomass gasification: An integrated techno-economic and environmental analysis," Energy, Elsevier, vol. 270(C).
    9. Prabu, V. & Geeta, K., 2015. "CO2 enhanced in-situ oxy-coal gasification based carbon-neutral conventional power generating systems," Energy, Elsevier, vol. 84(C), pages 672-683.
    10. Nemet, Gregory F. & Baker, Erin & Jenni, Karen E., 2013. "Modeling the future costs of carbon capture using experts' elicited probabilities under policy scenarios," Energy, Elsevier, vol. 56(C), pages 218-228.
    11. Ren, Siyue & Feng, Xiao & Wang, Yufei, 2021. "Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    12. Karolina Wojtacha-Rychter & Adam Smoliński, 2018. "Study of the Hazard of Endogenous Fires in Coal Mines—A Chemometric Approach," Energies, MDPI, vol. 11(11), pages 1-10, November.
    13. Li, Jin & Wang, Rui & Li, Haoran & Nie, Yaoyu & Song, Xinke & Li, Mingyu & Shi, Mai & Zheng, Xinzhu & Cai, Wenjia & Wang, Can, 2021. "Unit-level cost-benefit analysis for coal power plants retrofitted with biomass co-firing at a national level by combined GIS and life cycle assessment," Applied Energy, Elsevier, vol. 285(C).
    14. Calin-Cristian Cormos, 2018. "Techno-Economic Evaluations of Copper-Based Chemical Looping Air Separation System for Oxy-Combustion and Gasification Power Plants with Carbon Capture," Energies, MDPI, vol. 11(11), pages 1-17, November.
    15. Patel, Vimal R. & Patel, Darshil & Varia, Nandan S. & Patel, Rajesh N., 2017. "Co-gasification of lignite and waste wood in a pilot-scale (10 kWe) downdraft gasifier," Energy, Elsevier, vol. 119(C), pages 834-844.
    16. Li, Fang-zhou & Kang, Jing-xian & Song, Yun-cai & Feng, Jie & Li, Wen-ying, 2020. "Thermodynamic feasibility for molybdenum-based gaseous oxides assisted looping coal gasification and its derived power plant," Energy, Elsevier, vol. 194(C).
    17. Alexander N. Kozlov & Nikita V. Tomin & Denis N. Sidorov & Electo E. S. Lora & Victor G. Kurbatsky, 2020. "Optimal Operation Control of PV-Biomass Gasifier-Diesel-Hybrid Systems Using Reinforcement Learning Techniques," Energies, MDPI, vol. 13(10), pages 1-20, May.
    18. Sterkhov, K.V. & Khokhlov, D.A. & Zaichenko, M.N., 2024. "Zero carbon emission CCGT power plant with integrated solid fuel gasification," Energy, Elsevier, vol. 294(C).
    19. Kristína Zakuciová & Ana Carvalho & Jiří Štefanica & Monika Vitvarová & Lukáš Pilař & Vladimír Kočí, 2020. "Environmental and Comparative Assessment of Integrated Gasification Gas Cycle with CaO Looping and CO 2 Adsorption by Activated Carbon: A Case Study of the Czech Republic," Energies, MDPI, vol. 13(16), pages 1-24, August.
    20. Yulei Xie & Zhenghui Fu & Dehong Xia & Wentao Lu & Guohe Huang & Han Wang, 2019. "Integrated Planning for Regional Electric Power System Management with Risk Measure and Carbon Emission Constraints: A Case Study of the Xinjiang Uygur Autonomous Region, China," Energies, MDPI, vol. 12(4), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:114:y:2016:i:c:p:1207-1213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.