IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v216y2021ics0360544220324002.html
   My bibliography  Save this article

Numerical analysis on the optical geometrical optimization for an axial type impinging solar receiver

Author

Listed:
  • Martínez-Manuel, Leopoldo
  • Wang, Wujun
  • Laumert, Björn
  • Peña-Cruz, Manuel I.

Abstract

Solar cavity receivers are key components in point-focus concentrating solar power technologies due to their benefits of high efficiency and operating temperature. Accordingly, the enhancement of the optical performance can yield to significant improvements in the whole thermal power system. In this study, a geometrical optimization of an axial type impinging receiver for a solar dish Brayton system was analytically accomplished through Monte Carlo ray tracing method. By modeling a reference cylindrical cavity, optical surface properties and geometrical parameters were analyzed by dividing the cavity into three zones: front wall, middle wall and back wall. Simulation results show that the light flux peaking on the cylindrical wall can be significantly reduced when the cavity front wall is modified by changing the inclination angle; the light flux distribution over the absorber surface can be flattened by increasing the cavity radius; the irradiance distribution over the absorber can be efficiently adjusted by modifying the cavity back wall. After the cavity geometry optimization, the optical efficiency of the receiver can be enhanced by 3.34%, the material volume can be reduced by 20.1% and the peak flux on the cavity wall can be reduced by 38.6%, from 30 to 18.4 kW/m2.

Suggested Citation

  • Martínez-Manuel, Leopoldo & Wang, Wujun & Laumert, Björn & Peña-Cruz, Manuel I., 2021. "Numerical analysis on the optical geometrical optimization for an axial type impinging solar receiver," Energy, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:energy:v:216:y:2021:i:c:s0360544220324002
    DOI: 10.1016/j.energy.2020.119293
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220324002
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119293?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Py, Xavier & Azoumah, Yao & Olives, Régis, 2013. "Concentrated solar power: Current technologies, major innovative issues and applicability to West African countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 306-315.
    2. Daabo, Ahmed M. & Mahmoud, Saad & Al-Dadah, Raya K., 2016. "The effect of receiver geometry on the optical performance of a small-scale solar cavity receiver for parabolic dish applications," Energy, Elsevier, vol. 114(C), pages 513-525.
    3. Loni, Reyhaneh & Askari Asli-Areh, E. & Ghobadian, B. & Kasaeian, A.B. & Gorjian, Sh. & Najafi, G. & Bellos, Evangelos, 2020. "Research and review study of solar dish concentrators with different nanofluids and different shapes of cavity receiver: Experimental tests," Renewable Energy, Elsevier, vol. 145(C), pages 783-804.
    4. Yu, Qiang & Wang, Zhifeng & Xu, Ershu, 2014. "Analysis and improvement of solar flux distribution inside a cavity receiver based on multi-focal points of heliostat field," Applied Energy, Elsevier, vol. 136(C), pages 417-430.
    5. Li, Yuqiang & Liu, Gang & Liu, Xianping & Liao, Shengming, 2016. "Thermodynamic multi-objective optimization of a solar-dish Brayton system based on maximum power output, thermal efficiency and ecological performance," Renewable Energy, Elsevier, vol. 95(C), pages 465-473.
    6. Wang, Wujun & Laumert, Björn, 2018. "An axial type impinging receiver," Energy, Elsevier, vol. 162(C), pages 318-334.
    7. Tchanche, Bertrand F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2011. "Low-grade heat conversion into power using organic Rankine cycles – A review of various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3963-3979.
    8. José Carlos Garcia Pereira & José Rodríguez & Jorge Cruz Fernandes & Luís Guerra Rosa, 2020. "Homogeneous Flux Distribution in High-Flux Solar Furnaces," Energies, MDPI, vol. 13(2), pages 1-18, January.
    9. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    10. Yan, Jian & Peng, You-duo & Cheng, Zi-ran, 2018. "Optimization of a discrete dish concentrator for uniform flux distribution on the cavity receiver of solar concentrator system," Renewable Energy, Elsevier, vol. 129(PA), pages 431-445.
    11. Loni, R. & Kasaeian, A.B. & Askari Asli-Ardeh, E. & Ghobadian, B., 2016. "Optimizing the efficiency of a solar receiver with tubular cylindrical cavity for a solar-powered organic Rankine cycle," Energy, Elsevier, vol. 112(C), pages 1259-1272.
    12. Wang, Kun & He, Ya-Ling & Qiu, Yu & Zhang, Yuwen, 2016. "A novel integrated simulation approach couples MCRT and Gebhart methods to simulate solar radiation transfer in a solar power tower system with a cavity receiver," Renewable Energy, Elsevier, vol. 89(C), pages 93-107.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sedighi, Mohammadreza & Padilla, Ricardo Vasquez & Rose, Andrew & Taylor, Robert A., 2022. "Optical analysis of a semi-transparent packed bed of spheres for next-generation volumetric solar receivers," Energy, Elsevier, vol. 252(C).
    2. Bartosz Stanek & Jakub Ochmann & Daniel Węcel & Łukasz Bartela, 2023. "Study of Twisted Tape Inserts Segmental Application in Low-Concentrated Solar Parabolic Trough Collectors," Energies, MDPI, vol. 16(9), pages 1-28, April.
    3. Stanek, Bartosz & Węcel, Daniel & Bartela, Łukasz & Rulik, Sebastian, 2022. "Solar tracker error impact on linear absorbers efficiency in parabolic trough collector – Optical and thermodynamic study," Renewable Energy, Elsevier, vol. 196(C), pages 598-609.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassan, Atazaz & Quanfang, Chen & Abbas, Sajid & Lu, Wu & Youming, Luo, 2021. "An experimental investigation on thermal and optical analysis of cylindrical and conical cavity copper tube receivers design for solar dish concentrator," Renewable Energy, Elsevier, vol. 179(C), pages 1849-1864.
    2. Kasaeian, Alibakhsh & Kouravand, Amir & Vaziri Rad, Mohammad Amin & Maniee, Siavash & Pourfayaz, Fathollah, 2021. "Cavity receivers in solar dish collectors: A geometric overview," Renewable Energy, Elsevier, vol. 169(C), pages 53-79.
    3. Soltani, Sara & Bonyadi, Mohammad & Madadi Avargani, Vahid, 2019. "A novel optical-thermal modeling of a parabolic dish collector with a helically baffled cylindrical cavity receiver," Energy, Elsevier, vol. 168(C), pages 88-98.
    4. Yanping, Zhang & Yuxuan, Chen & Chongzhe, Zou & Hu, Xiao & Falcoz, Quentin & Neveu, Pierre & Cheng, Zhang & Xiaohong, Huang, 2021. "Experimental investigation on heat-transfer characteristics of a cylindrical cavity receiver with pressurized air in helical pipe," Renewable Energy, Elsevier, vol. 163(C), pages 320-330.
    5. Sun, Lulening & Zong, Chenggang & Yu, Liang & Huang, Weidong, 2019. "Evaluation of solar brightness distribution models for performance simulation and optimization of solar dish," Energy, Elsevier, vol. 180(C), pages 192-205.
    6. Jin, Yabin & Fang, Jiabin & Wei, Jinjia & Qaisrani, Mumtaz A. & Wang, Xinhe, 2019. "Thermal performance evaluation of a cavity receiver based on particle's radiation properties during the day time," Renewable Energy, Elsevier, vol. 143(C), pages 622-636.
    7. Chongzhe, Zou & Yanping, Zhang & Falcoz, Quentin & Neveu, Pierre, 2022. "Solar-thermal conversion investigation using surface partition method for a cavity receiver with helical pipe," Energy, Elsevier, vol. 242(C).
    8. Loni, R. & Askari Asli-Ardeh, E. & Ghobadian, B. & Kasaeian, A.B. & Bellos, Evangelos, 2018. "Thermal performance comparison between Al2O3/oil and SiO2/oil nanofluids in cylindrical cavity receiver based on experimental study," Renewable Energy, Elsevier, vol. 129(PA), pages 652-665.
    9. Daabo, Ahmed M. & Mahmoud, Saad & Al-Dadah, Raya K. & Ahmad, Abdalqader, 2017. "Numerical investigation of pitch value on thermal performance of solar receiver for solar powered Brayton cycle application," Energy, Elsevier, vol. 119(C), pages 523-539.
    10. Conroy, Tim & Collins, Maurice N. & Grimes, Ronan, 2020. "A review of steady-state thermal and mechanical modelling on tubular solar receivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    11. Guobin Cao & Hua Qin & Rajan Ramachandran & Bo Liu, 2019. "Solar Concentrator Consisting of Multiple Aspheric Reflectors," Energies, MDPI, vol. 12(21), pages 1-14, October.
    12. Alireza Rafiei & Reyhaneh Loni & Gholamhassan Najafi & Talal Yusaf, 2020. "Study of PTC System with Rectangular Cavity Receiver with Different Receiver Tube Shapes Using Oil, Water and Air," Energies, MDPI, vol. 13(8), pages 1-24, April.
    13. Zhang, Li & Fang, Jiabin & Wei, Jinjia & Yang, Guidong, 2017. "Numerical investigation on the thermal performance of molten salt cavity receivers with different structures," Applied Energy, Elsevier, vol. 204(C), pages 966-978.
    14. Yan, Jian & Liu, Yong-xiang & Peng, You-Duo, 2022. "Study on the optical performance of novel dish solar concentrator formed by rotating array of plane mirrors with the same size," Renewable Energy, Elsevier, vol. 195(C), pages 416-430.
    15. Pratik, Nahyan Ahnaf & Ali, Md. Hasan & Lubaba, Nafisa & Hasan, Nahid & Asaduzzaman, Md. & Miyara, Akio, 2024. "Numerical investigation to optimize the modified cavity receiver for enhancement of thermal performance of solar parabolic dish collector system," Energy, Elsevier, vol. 290(C).
    16. Loni, R. & Kasaeian, A.B. & Askari Asli-Ardeh, E. & Ghobadian, B. & Gorjian, Sh, 2018. "Experimental and numerical study on dish concentrator with cubical and cylindrical cavity receivers using thermal oil," Energy, Elsevier, vol. 154(C), pages 168-181.
    17. Liang, Qi & He, Ya-Ling & Ren, Qinlong & Zhou, Yi-Peng & Xie, Tao, 2018. "A detailed study on phonon transport in thin silicon membranes with phononic crystal nanostructures," Applied Energy, Elsevier, vol. 227(C), pages 731-741.
    18. Qiu, Yu & He, Ya-Ling & Wu, Ming & Zheng, Zhang-Jing, 2016. "A comprehensive model for optical and thermal characterization of a linear Fresnel solar reflector with a trapezoidal cavity receiver," Renewable Energy, Elsevier, vol. 97(C), pages 129-144.
    19. Jian, Yan & Peng, You Duo & Liu, Yong Xiang, 2022. "An optical-mechanical integrated modeling method of solar dish concentrator system for optical performance analysis under service load," Energy, Elsevier, vol. 261(PB).
    20. Wang, Kun & He, Ya-Ling & Xue, Xiao-Dai & Du, Bao-Cun, 2017. "Multi-objective optimization of the aiming strategy for the solar power tower with a cavity receiver by using the non-dominated sorting genetic algorithm," Applied Energy, Elsevier, vol. 205(C), pages 399-416.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:216:y:2021:i:c:s0360544220324002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.