IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v111y2016icp768-773.html
   My bibliography  Save this article

Evaluation of water hyacinth (Eichhornia crassipes) as a potential raw material source for briquette production

Author

Listed:
  • Rezania, Shahabaldin
  • Md Din, Mohd Fadhil
  • Kamaruddin, Siti Fatimah
  • Taib, Shazwin Mat
  • Singh, Lakhveer
  • Yong, Ee Ling
  • Dahalan, Farrah Aini

Abstract

In the present study we investigated the fuel properties of bio-briquettes made from a combination of water hyacinth and empty fruit bunch fiber (palm oil mill residue). Water hyacinth (WH) was mixed with empty fruit bunch (EFB) fibers in a ratio of 25, 50, 75, 90, and 100% by weight and cassava starch added as binder. The experimental results showed that the addition of WH had a little effect (p < 0.05) on the physical and combustion properties of the briquettes. The proximate analysis showed that the moisture content, ash content and fixed carbon content were increased with the increase in WH amount from 25 to 100%, while the volatile matter content and calorific value decreased. Combustion test showed that the increase in the WH percentage in bio-briquette resulted in the decreased of O2 and CO level, whereas, that of CO2 and NO, NO2 and SO2 were increased. Therefore, the results conclude that the WH: EFB biomass bio-briquette could be a great potential as an alternative source to conventional coal to minimize the emission of greenhouse gases.

Suggested Citation

  • Rezania, Shahabaldin & Md Din, Mohd Fadhil & Kamaruddin, Siti Fatimah & Taib, Shazwin Mat & Singh, Lakhveer & Yong, Ee Ling & Dahalan, Farrah Aini, 2016. "Evaluation of water hyacinth (Eichhornia crassipes) as a potential raw material source for briquette production," Energy, Elsevier, vol. 111(C), pages 768-773.
  • Handle: RePEc:eee:energy:v:111:y:2016:i:c:p:768-773
    DOI: 10.1016/j.energy.2016.06.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421630799X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.06.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Narayanan, K.V. & Natarajan, E., 2007. "Experimental studies on cofiring of coal and biomass blends in India," Renewable Energy, Elsevier, vol. 32(15), pages 2548-2558.
    2. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2014. "Utilization of palm solid residue as a source of renewable and sustainable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 621-632.
    3. Awalludin, Mohd Fahmi & Sulaiman, Othman & Hashim, Rokiah & Nadhari, Wan Noor Aidawati Wan, 2015. "An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1469-1484.
    4. Gao, Ying & Wang, Xianhua & Wang, Jun & Li, Xiangpeng & Cheng, Jianjun & Yang, Haiping & Chen, Hanping, 2013. "Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth," Energy, Elsevier, vol. 58(C), pages 376-383.
    5. Rezania, Shahabaldin & Ponraj, Mohanadoss & Din, Mohd Fadhil Md & Songip, Ahmad Rahman & Sairan, Fadzlin Md & Chelliapan, Shreeshivadasan, 2015. "The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 943-954.
    6. Srivastava, N.S.L. & Narnaware, S.L. & Makwana, J.P. & Singh, S.N. & Vahora, S., 2014. "Investigating the energy use of vegetable market waste by briquetting," Renewable Energy, Elsevier, vol. 68(C), pages 270-275.
    7. Shafie, S.M. & Mahlia, T.M.I. & Masjuki, H.H., 2013. "Life cycle assessment of rice straw co-firing with coal power generation in Malaysia," Energy, Elsevier, vol. 57(C), pages 284-294.
    8. Ho, Lip-Wah, 2016. "Wind energy in Malaysia: Past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 279-295.
    9. Roy, Murari Mohon & Corscadden, Kenny W., 2012. "An experimental study of combustion and emissions of biomass briquettes in a domestic wood stove," Applied Energy, Elsevier, vol. 99(C), pages 206-212.
    10. Bazmi, Aqeel Ahmed & Zahedi, Gholamreza & Hashim, Haslenda, 2011. "Progress and challenges in utilization of palm oil biomass as fuel for decentralized electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 574-583, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng, Valerie & Slocum, Alexander, 2020. "Endemic Water and Storm Trash to energy via in-situ processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Aaron E. Brown & Jessica M. M. Adams & Oliver R. Grasham & Miller Alonso Camargo-Valero & Andrew B. Ross, 2020. "An Assessment of Different Integration Strategies of Hydrothermal Carbonisation and Anaerobic Digestion of Water Hyacinth," Energies, MDPI, vol. 13(22), pages 1-26, November.
    3. Okey Francis Obi & Ralf Pecenka & Michael J. Clifford, 2022. "A Review of Biomass Briquette Binders and Quality Parameters," Energies, MDPI, vol. 15(7), pages 1-22, March.
    4. Anna Brunerová & Hynek Roubík & Milan Brožek & David Herák & Vladimír Šleger & Jana Mazancová, 2017. "Potential of Tropical Fruit Waste Biomass for Production of Bio-Briquette Fuel: Using Indonesia as an Example," Energies, MDPI, vol. 10(12), pages 1-22, December.
    5. Obianuju P. Ilo & Mulala D. Simatele & S’phumelele L. Nkomo & Ntandoyenkosi M. Mkhize & Nagendra G. Prabhu, 2020. "The Benefits of Water Hyacinth ( Eichhornia crassipes ) for Southern Africa: A Review," Sustainability, MDPI, vol. 12(21), pages 1-20, November.
    6. Lubwama, Michael & Yiga, Vianney Andrew & Muhairwe, Frank & Kihedu, Joseph, 2020. "Physical and combustion properties of agricultural residue bio-char bio-composite briquettes as sustainable domestic energy sources," Renewable Energy, Elsevier, vol. 148(C), pages 1002-1016.
    7. Lubwama, Michael & Yiga, Vianney Andrew, 2018. "Characteristics of briquettes developed from rice and coffee husks for domestic cooking applications in Uganda," Renewable Energy, Elsevier, vol. 118(C), pages 43-55.
    8. Promdee, Kittiphop & Chanvidhwatanakit, Jirawat & Satitkune, Somruedee & Boonmee, Chakkrich & Kawichai, Thitipong & Jarernprasert, Sittipong & Vitidsant, Tharapong, 2017. "Characterization of carbon materials and differences from activated carbon particle (ACP) and coal briquettes product (CBP) derived from coconut shell via rotary kiln," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1175-1186.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khatun, Rahima & Reza, Mohammad Imam Hasan & Moniruzzaman, M. & Yaakob, Zahira, 2017. "Sustainable oil palm industry: The possibilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 608-619.
    2. How, Bing Shen & Ngan, Sue Lin & Hong, Boon Hooi & Lam, Hon Loong & Ng, Wendy Pei Qin & Yusup, Suzana & Ghani, Wan Azlina Wan Abd Karim & Kansha, Yasuki & Chan, Yi Herng & Cheah, Kin Wai & Shahbaz, Mu, 2019. "An outlook of Malaysian biomass industry commercialisation: Perspectives and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Wang, Zhiwei & Lei, Tingzhou & Chang, Xia & Shi, Xinguang & Xiao, Ju & Li, Zaifeng & He, Xiaofeng & Zhu, Jinling & Yang, Shuhua, 2015. "Optimization of a biomass briquette fuel system based on grey relational analysis and analytic hierarchy process: A study using cornstalks in China," Applied Energy, Elsevier, vol. 157(C), pages 523-532.
    4. Nur Izzah Hamna A. Aziz & Marlia M. Hanafiah & Shabbir H. Gheewala & Haikal Ismail, 2020. "Bioenergy for a Cleaner Future: A Case Study of Sustainable Biogas Supply Chain in the Malaysian Energy Sector," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
    5. Lacrimioara Senila & Ioan Tenu & Petru Carlescu & Daniela Alexandra Scurtu & Eniko Kovacs & Marin Senila & Oana Cadar & Marius Roman & Diana Elena Dumitras & Cecilia Roman, 2022. "Characterization of Biobriquettes Produced from Vineyard Wastes as a Solid Biofuel Resource," Agriculture, MDPI, vol. 12(3), pages 1-13, February.
    6. Derman, Eryati & Abdulla, Rahmath & Marbawi, Hartinie & Sabullah, Mohd Khalizan, 2018. "Oil palm empty fruit bunches as a promising feedstock for bioethanol production in Malaysia," Renewable Energy, Elsevier, vol. 129(PA), pages 285-298.
    7. Samiran, Nor Afzanizam & Jaafar, Mohammad Nazri Mohd & Ng, Jo-Han & Lam, Su Shiung & Chong, Cheng Tung, 2016. "Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1047-1062.
    8. Restrepo, Álvaro & Bazzo, Edson, 2016. "Co-firing: An exergoenvironmental analysis applied to power plants modified for burning coal and rice straw," Renewable Energy, Elsevier, vol. 91(C), pages 107-119.
    9. Hifsa Khurshid & Muhammad Raza Ul Mustafa & Mohamed Hasnain Isa, 2022. "Modified Activated Carbon Synthesized from Oil Palm Leaves Waste as a Novel Green Adsorbent for Chemical Oxygen Demand in Produced Water," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    10. Ahmad, Farah B. & Zhang, Zhanying & Doherty, William O.S. & O'Hara, Ian M., 2019. "The outlook of the production of advanced fuels and chemicals from integrated oil palm biomass biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 386-411.
    11. Román, S. & Ledesma, B. & Álvarez, A. & Coronella, C. & Qaramaleki, S.V., 2020. "Suitability of hydrothermal carbonization to convert water hyacinth to added-value products," Renewable Energy, Elsevier, vol. 146(C), pages 1649-1658.
    12. Asamoah, Bernice & Nikiema, Josiane & Gebrezgabher, Solomie & Odonkor, Elsie & Njenga, M., 2016. "A review on production, marketing and use of fuel briquettes," IWMI Reports 257959, International Water Management Institute.
    13. Bui, Mai & Fajardy, Mathilde & Mac Dowell, Niall, 2017. "Bio-Energy with CCS (BECCS) performance evaluation: Efficiency enhancement and emissions reduction," Applied Energy, Elsevier, vol. 195(C), pages 289-302.
    14. Tiago Teribele & Maria Elizabeth Gemaque Costa & Conceição de Maria Sales da Silva & Lia Martins Pereira & Lucas Pinto Bernar & Douglas Alberto Rocha de Castro & Fernanda Paula da Costa Assunção & Mar, 2023. "Hydrothermal Carbonization of Corn Stover: Structural Evolution of Hydro-Char and Degradation Kinetics," Energies, MDPI, vol. 16(7), pages 1-22, April.
    15. Ma, Chenshuo & Zhang, Yifei & Ma, Keni & Li, Chanyun, 2023. "Study on the relationship between service scale and investment cost of energy service stations," Energy, Elsevier, vol. 269(C).
    16. Gao, Pin & Zhou, Yiyuan & Meng, Fang & Zhang, Yihui & Liu, Zhenhong & Zhang, Wenqi & Xue, Gang, 2016. "Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization," Energy, Elsevier, vol. 97(C), pages 238-245.
    17. Ho, Lip-Wah & Lie, Tek-Tjing & Leong, Paul TM & Clear, Tony, 2018. "Developing offshore wind farm siting criteria by using an international Delphi method," Energy Policy, Elsevier, vol. 113(C), pages 53-67.
    18. Jean de Dieu Marcel Ufitikirezi & Martin Filip & Mohammad Ghorbani & Tomáš Zoubek & Pavel Olšan & Roman Bumbálek & Miroslav Strob & Petr Bartoš & Sandra Nicole Umurungi & Yves Theoneste Murindangabo &, 2024. "Agricultural Waste Valorization: Exploring Environmentally Friendly Approaches to Bioenergy Conversion," Sustainability, MDPI, vol. 16(9), pages 1-24, April.
    19. Wander, Paulo R. & Bianchi, Flávio M. & Caetano, Nattan R. & Klunk, Marcos A. & Indrusiak, Maria Luiza S., 2020. "Cofiring low-rank coal and biomass in a bubbling fluidized bed with varying excess air ratio and fluidization velocity," Energy, Elsevier, vol. 203(C).
    20. Li, Shiyuan & Xu, Mingxin & Jia, Lufei & Tan, Li & Lu, Qinggang, 2016. "Influence of operating parameters on N2O emission in O2/CO2 combustion with high oxygen concentration in circulating fluidized bed," Applied Energy, Elsevier, vol. 173(C), pages 197-209.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:111:y:2016:i:c:p:768-773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.