IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v146y2020icp1649-1658.html
   My bibliography  Save this article

Suitability of hydrothermal carbonization to convert water hyacinth to added-value products

Author

Listed:
  • Román, S.
  • Ledesma, B.
  • Álvarez, A.
  • Coronella, C.
  • Qaramaleki, S.V.

Abstract

Water hyacinth hydrothermal carbonization was studied under different temperature (160–250 C), time (30–120 min) and biomass/water ratio (10–50%) conditions. The research was designed following response surface methodology, which was very useful to infer interactions between variables and to develop models predicting the system behaviour with good accuracy. Output functions were solid yield, hydrochar C and N content, as well as their captures, and heating value. It was found that while temperature was the most influential variable promoting HTC reactions, time and even biomass load were decisive to provide particular C and N captures; based on these results, reaction mechanisms were discussed. On the other hand, 2D graphs allowed to build different scenarios in which target properties might be achieved under a wide range of dissimilar conditions, leading to process optimization. The study was complemented by exploring hydrochar surface properties by N2 adsorption at 77 K, SEM micrography and XPS analyses.

Suggested Citation

  • Román, S. & Ledesma, B. & Álvarez, A. & Coronella, C. & Qaramaleki, S.V., 2020. "Suitability of hydrothermal carbonization to convert water hyacinth to added-value products," Renewable Energy, Elsevier, vol. 146(C), pages 1649-1658.
  • Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:1649-1658
    DOI: 10.1016/j.renene.2019.07.157
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119311772
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.07.157?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Álvarez-Murillo, A. & Sabio, E. & Ledesma, B. & Román, S. & González-García, C.M., 2016. "Generation of biofuel from hydrothermal carbonization of cellulose. Kinetics modelling," Energy, Elsevier, vol. 94(C), pages 600-608.
    2. Gao, Ying & Wang, Xianhua & Wang, Jun & Li, Xiangpeng & Cheng, Jianjun & Yang, Haiping & Chen, Hanping, 2013. "Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth," Energy, Elsevier, vol. 58(C), pages 376-383.
    3. Rezania, Shahabaldin & Ponraj, Mohanadoss & Din, Mohd Fadhil Md & Songip, Ahmad Rahman & Sairan, Fadzlin Md & Chelliapan, Shreeshivadasan, 2015. "The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 943-954.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Śliz, Maciej & Wilk, Małgorzata, 2020. "A comprehensive investigation of hydrothermal carbonization: Energy potential of hydrochar derived from Virginia mallow," Renewable Energy, Elsevier, vol. 156(C), pages 942-950.
    2. Antonios Nazos & Panagiotis Grammelis & Elias Sakellis & Dimitrios Sidiras, 2020. "Acid-Catalyzed Wet Torrefaction for Enhancing the Heating Value of Barley Straw," Energies, MDPI, vol. 13(7), pages 1-16, April.
    3. Rocío García-Morato & Silvia Román & Beatriz Ledesma & Charles Coronella, 2023. "Co-Hydrothermal Carbonization of Grass and Olive Stone as a Means to Lower Water Input to HTC," Resources, MDPI, vol. 12(7), pages 1-14, July.
    4. Wilk, Małgorzata & Śliz, Maciej & Lubieniecki, Bogusław, 2021. "Hydrothermal co-carbonization of sewage sludge and fuel additives: Combustion performance of hydrochar," Renewable Energy, Elsevier, vol. 178(C), pages 1046-1056.
    5. Shulun Han & Li Bai & Mingshu Chi & Xiuling Xu & Zhao Chen & Kecheng Yu, 2022. "Conversion of Waste Corn Straw to Value-Added Fuel via Hydrothermal Carbonization after Acid Washing," Energies, MDPI, vol. 15(5), pages 1-14, March.
    6. Aaron E. Brown & Jessica M. M. Adams & Oliver R. Grasham & Miller Alonso Camargo-Valero & Andrew B. Ross, 2020. "An Assessment of Different Integration Strategies of Hydrothermal Carbonisation and Anaerobic Digestion of Water Hyacinth," Energies, MDPI, vol. 13(22), pages 1-26, November.
    7. Ramprakash, Balasubramani & Lindblad, Peter & Eaton-Rye, Julian J. & Incharoensakdi, Aran, 2022. "Current strategies and future perspectives in biological hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiago Teribele & Maria Elizabeth Gemaque Costa & Conceição de Maria Sales da Silva & Lia Martins Pereira & Lucas Pinto Bernar & Douglas Alberto Rocha de Castro & Fernanda Paula da Costa Assunção & Mar, 2023. "Hydrothermal Carbonization of Corn Stover: Structural Evolution of Hydro-Char and Degradation Kinetics," Energies, MDPI, vol. 16(7), pages 1-22, April.
    2. Rezania, Shahabaldin & Md Din, Mohd Fadhil & Kamaruddin, Siti Fatimah & Taib, Shazwin Mat & Singh, Lakhveer & Yong, Ee Ling & Dahalan, Farrah Aini, 2016. "Evaluation of water hyacinth (Eichhornia crassipes) as a potential raw material source for briquette production," Energy, Elsevier, vol. 111(C), pages 768-773.
    3. Gao, Pin & Zhou, Yiyuan & Meng, Fang & Zhang, Yihui & Liu, Zhenhong & Zhang, Wenqi & Xue, Gang, 2016. "Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization," Energy, Elsevier, vol. 97(C), pages 238-245.
    4. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    5. Mau, Vivian & Gross, Amit, 2018. "Energy conversion and gas emissions from production and combustion of poultry-litter-derived hydrochar and biochar," Applied Energy, Elsevier, vol. 213(C), pages 510-519.
    6. Aaron E. Brown & Jessica M. M. Adams & Oliver R. Grasham & Miller Alonso Camargo-Valero & Andrew B. Ross, 2020. "An Assessment of Different Integration Strategies of Hydrothermal Carbonisation and Anaerobic Digestion of Water Hyacinth," Energies, MDPI, vol. 13(22), pages 1-26, November.
    7. Wang, Tengfei & Zhai, Yunbo & Zhu, Yun & Li, Caiting & Zeng, Guangming, 2018. "A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 223-247.
    8. Zanxin Wang & Fangyuan Zheng & Shiya Xue, 2019. "The Economic Feasibility of the Valorization of Water Hyacinth for Bioethanol Production," Sustainability, MDPI, vol. 11(3), pages 1-21, February.
    9. Imtiaz Anando, Ahmed & Ehsan, M Monjurul & Karim, Md Rezwanul & Bhuiyan, Arafat A. & Ahiduzzaman, Md & Karim, Azharul, 2023. "Thermochemical pretreatments to improve the fuel properties of rice husk: A review," Renewable Energy, Elsevier, vol. 215(C).
    10. Unrean, Pornkamol & Lai Fui, Bridgid Chin & Rianawati, Elisabeth & Acda, Menandro, 2018. "Comparative techno-economic assessment and environmental impacts of rice husk-to-fuel conversion technologies," Energy, Elsevier, vol. 151(C), pages 581-593.
    11. Heidari, Mohammad & Salaudeen, Shakirudeen & Arku, Precious & Acharya, Bishnu & Tasnim, Syeda & Dutta, Animesh, 2021. "Development of a mathematical model for hydrothermal carbonization of biomass: Comparison of experimental measurements with model predictions," Energy, Elsevier, vol. 214(C).
    12. Nepu Saha & Akbar Saba & Pretom Saha & Kyle McGaughy & Diana Franqui-Villanueva & William J. Orts & William M. Hart-Cooper & M. Toufiq Reza, 2019. "Hydrothermal Carbonization of Various Paper Mill Sludges: An Observation of Solid Fuel Properties," Energies, MDPI, vol. 12(5), pages 1-18, March.
    13. Wang, Guangwei & Zhang, Jianliang & Lee, Jui-Yuan & Mao, Xiaoming & Ye, Lian & Xu, Wanren & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Wang, Chuan, 2020. "Hydrothermal carbonization of maize straw for hydrochar production and its injection for blast furnace," Applied Energy, Elsevier, vol. 266(C).
    14. Sławomir Francik & Bogusława Łapczyńska-Kordon & Norbert Pedryc & Wojciech Szewczyk & Renata Francik & Zbigniew Ślipek, 2022. "The Use of Artificial Neural Networks for Determining Values of Selected Strength Parameters of Miscanthus × Giganteus," Sustainability, MDPI, vol. 14(5), pages 1-26, March.
    15. Kumar, Mayank & Olajire Oyedun, Adetoyese & Kumar, Amit, 2018. "A review on the current status of various hydrothermal technologies on biomass feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1742-1770.
    16. Amber Broch & Umakanta Jena & S. Kent Hoekman & Joel Langford, 2013. "Analysis of Solid and Aqueous Phase Products from Hydrothermal Carbonization of Whole and Lipid-Extracted Algae," Energies, MDPI, vol. 7(1), pages 1-18, December.
    17. Gao, Ying & Yu, Bo & Wang, Xianhua & Yuan, Qiaoxia & Yang, Haiping & Chen, Hanping & Zhang, Shihong, 2015. "Orthogonal test design to optimize products and to characterize heavy oil via biomass hydrothermal treatment," Energy, Elsevier, vol. 88(C), pages 139-148.
    18. Gao, Ying & Liu, Yinghui & Zhu, Guangkuo & Xu, Jiayu & xu, Hui & Yuan, Qiaoxia & Zhu, Yuezhao & Sarma, Jyotirmoy & Wang, Yinfeng & Wang, Jing & Ji, Lian, 2018. "Microwave-assisted hydrothermal carbonization of dairy manure: Chemical and structural properties of the products," Energy, Elsevier, vol. 165(PB), pages 662-672.
    19. Zhang, Chaoyue & Ma, Xiaoqian & Chen, Xinfei & Tian, Yunlong & Zhou, Yi & Lu, Xiaoluan & Huang, Tao, 2020. "Conversion of water hyacinth to value-added fuel via hydrothermal carbonization," Energy, Elsevier, vol. 197(C).
    20. Wei Zhong & Weiyang Bai & Gang Li, 2023. "Reduction of Hexavalent Chromium from Soil of the Relocated Factory Area with Rice Straw Hydrothermal Carbon Modified by Nano Zero-Valent Iron (nZVI)," IJERPH, MDPI, vol. 20(4), pages 1-12, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:146:y:2020:i:c:p:1649-1658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.