IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v32y2007i15p2548-2558.html
   My bibliography  Save this article

Experimental studies on cofiring of coal and biomass blends in India

Author

Listed:
  • Narayanan, K.V.
  • Natarajan, E.

Abstract

Concerns regarding the potential global environmental impacts of fossil fuels used in power generation and other energy supplies are increasing worldwide. One of the methods of mitigating these environmental impacts is increasing the fraction of renewable and sustainable energy in the national energy usage. A number of techniques and methods have been proposed for reducing gaseous emissions of NOx,SO2 and CO2 from fossil fuel combustion and for reducing costs associated with these mitigation techniques. Some of the control methods are expensive and therefore increase production costs. Among the less expensive alternatives, cofiring has gained popularity with the electric utility producers. This paper discusses the ‘gaseous emission characteristics namely NOx,SO2, suspended particulate matter and other characteristics like specific fuel consumption, total fuel required, actual and equivalent evaporation, total cost of fuel, etc. from a 18.68MW power plant with a travelling grate boiler, when biomass was cofired with bituminous coal in three proportions of 20%, 40% and 60% by mass. Bagasse, wood chips (Julia flora), sugarcane trash and coconut shell are the biomass fuels cofired with coal in this study.

Suggested Citation

  • Narayanan, K.V. & Natarajan, E., 2007. "Experimental studies on cofiring of coal and biomass blends in India," Renewable Energy, Elsevier, vol. 32(15), pages 2548-2558.
  • Handle: RePEc:eee:renene:v:32:y:2007:i:15:p:2548-2558
    DOI: 10.1016/j.renene.2006.12.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148107000158
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2006.12.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Niklas Vahlne & Erik O. Ahlgren, 2014. "Energy Efficiency at the Base of the Pyramid: A System-Based Market Model for Improved Cooking Stove Adoption," Sustainability, MDPI, vol. 6(12), pages 1-21, November.
    2. Ghafghazi, S. & Sowlati, T. & Sokhansanj, S. & Bi, X. & Melin, S., 2011. "Particulate matter emissions from combustion of wood in district heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3019-3028, August.
    3. Mao, Guozhu & Liu, Xi & Du, Huibin & Zuo, Jian & Wang, Linyuan, 2015. "Way forward for alternative energy research: A bibliometric analysis during 1994–2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 276-286.
    4. Rezania, Shahabaldin & Md Din, Mohd Fadhil & Kamaruddin, Siti Fatimah & Taib, Shazwin Mat & Singh, Lakhveer & Yong, Ee Ling & Dahalan, Farrah Aini, 2016. "Evaluation of water hyacinth (Eichhornia crassipes) as a potential raw material source for briquette production," Energy, Elsevier, vol. 111(C), pages 768-773.
    5. M. Pešek & M. Přikryl, 2014. "Technical possibilities of the cutting oils filtration residues combustion," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 60(2), pages 45-49.
    6. Restrepo, Álvaro & Bazzo, Edson, 2016. "Co-firing: An exergoenvironmental analysis applied to power plants modified for burning coal and rice straw," Renewable Energy, Elsevier, vol. 91(C), pages 107-119.
    7. Masami Ashizawa & Maromu Otaka & Hiromi Yamamoto & Atsushi Akisawa, 2022. "CO 2 Emissions and Economy of Co-Firing Carbonized Wood Pellets at Coal-Fired Power Plants: The Case of Overseas Production of Pellets and Use in Japan," Energies, MDPI, vol. 15(5), pages 1-10, February.
    8. Xu, Jiuping & Huang, Qian & Lv, Chengwei & Feng, Qing & Wang, Fengjuan, 2018. "Carbon emissions reductions oriented dynamic equilibrium strategy using biomass-coal co-firing," Energy Policy, Elsevier, vol. 123(C), pages 184-197.
    9. Verma, Munna & Loha, Chanchal & Sinha, Amar Nath & Chatterjee, Pradip Kumar, 2017. "Drying of biomass for utilising in co-firing with coal and its impact on environment – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 732-741.
    10. Wander, Paulo R. & Bianchi, Flávio M. & Caetano, Nattan R. & Klunk, Marcos A. & Indrusiak, Maria Luiza S., 2020. "Cofiring low-rank coal and biomass in a bubbling fluidized bed with varying excess air ratio and fluidization velocity," Energy, Elsevier, vol. 203(C).
    11. Yao, Xiwen & Zhou, Haodong & Xu, Kaili & Chen, Shoukun & Ge, Ji & Xu, Qingwei, 2020. "Systematic study on ash transformation behaviour and thermal kinetic characteristics during co-firing of biomass with high ratios of bituminous coal," Renewable Energy, Elsevier, vol. 147(P1), pages 1453-1468.
    12. Tao, Guangcan & Lestander, Torbjörn A. & Geladi, Paul & Xiong, Shaojun, 2012. "Biomass properties in association with plant species and assortments I: A synthesis based on literature data of energy properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3481-3506.
    13. Kalembkiewicz, Jan & Chmielarz, Urszula, 2012. "Ashes from co-combustion of coal and biomass: New industrial wastes," Resources, Conservation & Recycling, Elsevier, vol. 69(C), pages 109-121.
    14. Angelika Więckol-Ryk & Alicja Krzemień & Adam Smoliński & Fernando Sánchez Lasheras, 2018. "Analysis of Biomass Blend Co-Firing for Post Combustion CO 2 Capture," Sustainability, MDPI, vol. 10(4), pages 1-15, March.
    15. Bui, Mai & Fajardy, Mathilde & Mac Dowell, Niall, 2017. "Bio-Energy with CCS (BECCS) performance evaluation: Efficiency enhancement and emissions reduction," Applied Energy, Elsevier, vol. 195(C), pages 289-302.
    16. Nwamo R.D. & Ajonina G.N. & Pride Ndasi Ngwasiri & Besack F. & Moudingo E.J-H., 2022. "Problems of Invasive Species of Water Hyacinth (Eichhornia Crassipes [Mart.] Solms) in Cameroon with Special Reference to Its Eradication and Valorization: A Bibliographical Review," Energy and Environment Research, Canadian Center of Science and Education, vol. 12(1), pages 1-56, June.
    17. Rezania, Shahabaldin & Ponraj, Mohanadoss & Din, Mohd Fadhil Md & Songip, Ahmad Rahman & Sairan, Fadzlin Md & Chelliapan, Shreeshivadasan, 2015. "The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 943-954.
    18. Sahu, S.G. & Chakraborty, N. & Sarkar, P., 2014. "Coal–biomass co-combustion: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 575-586.

    More about this item

    Keywords

    Cofiring; Biomass; NOx; SO2; CO2;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:32:y:2007:i:15:p:2548-2558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.