IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v109y2016icp211-223.html
   My bibliography  Save this article

Wave energy absorption of a wave farm with an array of buoys and flexible runway

Author

Listed:
  • Zhang, H.C.
  • Xu, D.L.
  • Liu, C.R.
  • Wu, Y.S.

Abstract

A novel wave energy extraction method, based on the PTO (Power Take-Off) mechanism, is developed by utilizing an array of buoys connected with a flexible runway. Hydrodynamic interactions among the buoys are analyzed using an exact algebraic method based on linear wave theory in the frequency domain. A parametric governing equation of compounded wave energy converter referred to as a wave farm is formulated by using Hamilton's principle which can be discretized by using Galerkin method. The effects of wave condition and the parameters of PTO on the wave energy absorption and displacement of runway are analyzed. The results show that the energy extraction and displacement of the runway can reach an optimal balance by optimizing the stiffness of connectors and damping coefficient of PTO which leads to the benefits of more efficient energy absorption and less movement of the runway simultaneously. The quality of the wave farm is examined by introducing the q-factor to understand the effect of the array configuration. This research work is aimed to provide a theoretical guideline for wave energy converter design.

Suggested Citation

  • Zhang, H.C. & Xu, D.L. & Liu, C.R. & Wu, Y.S., 2016. "Wave energy absorption of a wave farm with an array of buoys and flexible runway," Energy, Elsevier, vol. 109(C), pages 211-223.
  • Handle: RePEc:eee:energy:v:109:y:2016:i:c:p:211-223
    DOI: 10.1016/j.energy.2016.04.107
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216305205
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.04.107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beels, Charlotte & Troch, Peter & De Visch, Kenneth & Kofoed, Jens Peter & De Backer, Griet, 2010. "Application of the time-dependent mild-slope equations for the simulation of wake effects in the lee of a farm of Wave Dragon wave energy converters," Renewable Energy, Elsevier, vol. 35(8), pages 1644-1661.
    2. Clément, Alain & McCullen, Pat & Falcão, António & Fiorentino, Antonio & Gardner, Fred & Hammarlund, Karin & Lemonis, George & Lewis, Tony & Nielsen, Kim & Petroncini, Simona & Pontes, M. -Teresa & Sc, 2002. "Wave energy in Europe: current status and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(5), pages 405-431, October.
    3. Pinson, P. & Reikard, G. & Bidlot, J.-R., 2012. "Probabilistic forecasting of the wave energy flux," Applied Energy, Elsevier, vol. 93(C), pages 364-370.
    4. Ramadan, A. & Mohamed, M.H. & Abdien, S.M. & Marzouk, S.Y. & El Feky, A. & El Baz, A.R., 2014. "Analytical investigation and experimental validation of an inverted cup float used for wave energy conversion," Energy, Elsevier, vol. 70(C), pages 539-546.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yuhan & Dong, Sheng, 2022. "Array of concentric perforated cylindrical systems with torus oscillating bodies integrated on inner cylinders," Applied Energy, Elsevier, vol. 327(C).
    2. Wang, Yu-Jen & Lee, Chih-Kuang, 2019. "Dynamics and power generation of wave energy converters mimicking biaxial hula-hoop motion for mooring-less buoys," Energy, Elsevier, vol. 183(C), pages 547-560.
    3. Hai-Cheng Zhang & Dao-Lin Xu & Chun-Rong Liu & You-Sheng Wu, 2017. "A Floating Platform with Embedded Wave Energy Harvesting Arrays in Regular and Irregular Seas," Energies, MDPI, vol. 10(9), pages 1-17, September.
    4. Zhao, Huai & Zhang, Haicheng & Bi, Rengui & Xi, Ru & Xu, Daolin & Shi, Qijia & Wu, Bo, 2020. "Enhancing efficiency of a point absorber bistable wave energy converter under low wave excitations," Energy, Elsevier, vol. 212(C).
    5. Jahangir, Mohammad Hossein & Hosseini, Seyed Sina & Mehrpooya, Mehdi, 2018. "A detailed theoretical modeling and parametric investigation of potential power in heaving buoys," Energy, Elsevier, vol. 154(C), pages 201-209.
    6. Zhang, Haicheng & Xu, Daolin & Ding, Rui & Zhao, Huai & Lu, Ye & Wu, Yousheng, 2019. "Embedded Power Take-Off in hinged modularized floating platform for wave energy harvesting and pitch motion suppression," Renewable Energy, Elsevier, vol. 138(C), pages 1176-1188.
    7. Zhang, Haicheng & Xi, Ru & Xu, Daolin & Wang, Kai & Shi, Qijia & Zhao, Huai & Wu, Bo, 2019. "Efficiency enhancement of a point wave energy converter with a magnetic bistable mechanism," Energy, Elsevier, vol. 181(C), pages 1152-1165.
    8. Zhang, Haicheng & Xu, Daolin & Zhao, Huai & Xia, Shuyan & Wu, Yousheng, 2018. "Energy extraction of wave energy converters embedded in a very large modularized floating platform," Energy, Elsevier, vol. 158(C), pages 317-329.
    9. Jin, Huaqing & Zhang, Haicheng & Xu, Daolin & Jun, Ding & Ze, Sun, 2022. "Low-frequency energy capture and water wave attenuation of a hybrid WEC-breakwater with nonlinear stiffness," Renewable Energy, Elsevier, vol. 196(C), pages 1029-1047.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Haicheng & Xu, Daolin & Zhao, Huai & Xia, Shuyan & Wu, Yousheng, 2018. "Energy extraction of wave energy converters embedded in a very large modularized floating platform," Energy, Elsevier, vol. 158(C), pages 317-329.
    2. Liang, Bingchen & Fan, Fei & Liu, Fushun & Gao, Shanhong & Zuo, Hongyan, 2014. "22-Year wave energy hindcast for the China East Adjacent Seas," Renewable Energy, Elsevier, vol. 71(C), pages 200-207.
    3. Jeon, Jooyoung & Taylor, James W., 2016. "Short-term density forecasting of wave energy using ARMA-GARCH models and kernel density estimation," International Journal of Forecasting, Elsevier, vol. 32(3), pages 991-1004.
    4. He, Fang & Huang, Zhenhua & Law, Adrian Wing-Keung, 2013. "An experimental study of a floating breakwater with asymmetric pneumatic chambers for wave energy extraction," Applied Energy, Elsevier, vol. 106(C), pages 222-231.
    5. Keskin Citiroglu, H. & Okur, A., 2014. "An approach to wave energy converter applications in Eregli on the western Black Sea coast of Turkey," Applied Energy, Elsevier, vol. 135(C), pages 738-747.
    6. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    7. Ozkop, Emre & Altas, Ismail H., 2017. "Control, power and electrical components in wave energy conversion systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 106-115.
    8. Zhang, Haicheng & Xi, Ru & Xu, Daolin & Wang, Kai & Shi, Qijia & Zhao, Huai & Wu, Bo, 2019. "Efficiency enhancement of a point wave energy converter with a magnetic bistable mechanism," Energy, Elsevier, vol. 181(C), pages 1152-1165.
    9. Neill, Simon P. & Hashemi, M. Reza, 2013. "Wave power variability over the northwest European shelf seas," Applied Energy, Elsevier, vol. 106(C), pages 31-46.
    10. Iglesias, G. & Carballo, R., 2014. "Wave farm impact: The role of farm-to-coast distance," Renewable Energy, Elsevier, vol. 69(C), pages 375-385.
    11. Gao, Yuping & Shao, Shuangquan & Zou, Huiming & Tang, Mingsheng & Xu, Hongbo & Tian, Changqing, 2016. "A fully floating system for a wave energy converter with direct-driven linear generator," Energy, Elsevier, vol. 95(C), pages 99-109.
    12. Çelik, Anıl & Altunkaynak, Abdüsselam, 2021. "An in depth experimental investigation into effects of incident wave characteristics front wall opening and PTO damping on the water column displacement and air differential pressure in an OWC chamber," Energy, Elsevier, vol. 230(C).
    13. Mota, P. & Pinto, J.P., 2014. "Wave energy potential along the western Portuguese coast," Renewable Energy, Elsevier, vol. 71(C), pages 8-17.
    14. Rusu, Eugen & Guedes Soares, C., 2009. "Numerical modelling to estimate the spatial distribution of the wave energy in the Portuguese nearshore," Renewable Energy, Elsevier, vol. 34(6), pages 1501-1516.
    15. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    16. Craig Jones & Grace Chang & Kaustubha Raghukumar & Samuel McWilliams & Ann Dallman & Jesse Roberts, 2018. "Spatial Environmental Assessment Tool (SEAT): A Modeling Tool to Evaluate Potential Environmental Risks Associated with Wave Energy Converter Deployments," Energies, MDPI, vol. 11(8), pages 1-19, August.
    17. Zilong, Ti & Yubing, Song & Xiaowei, Deng, 2022. "Spatial-temporal wave height forecast using deep learning and public reanalysis dataset," Applied Energy, Elsevier, vol. 326(C).
    18. Lavidas, George, 2019. "Energy and socio-economic benefits from the development of wave energy in Greece," Renewable Energy, Elsevier, vol. 132(C), pages 1290-1300.
    19. Wilberforce, Tabbi & El Hassan, Zaki & Durrant, A. & Thompson, J. & Soudan, Bassel & Olabi, A.G., 2019. "Overview of ocean power technology," Energy, Elsevier, vol. 175(C), pages 165-181.
    20. Burgaç, Alper & Yavuz, Hakan, 2019. "Fuzzy Logic based hybrid type control implementation of a heaving wave energy converter," Energy, Elsevier, vol. 170(C), pages 1202-1214.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:109:y:2016:i:c:p:211-223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.