IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v185y2019icp299-315.html
   My bibliography  Save this article

WHTO: A methodology of calculating the energy extraction of wave energy convertors based on wave height reduction

Author

Listed:
  • Shi, Hongda
  • Zhao, Chenyu
  • Hann, Martyn
  • Greaves, Deborah
  • Han, Zhi
  • Cao, Feifei

Abstract

Wave energy has significant worldwide exploitable resource and its exploitation has attracted renewable energy investigator’ attention. Great progress on calculating device performance has been made by means of theoretical, numerical and model tests. This paper presents a method of calculating the energy extraction of a wave energy converter (WEC) based on Wave Height Take-off (WHTO). The method provides a means to improve the capture efficiency of designs, including demonstrating how well different kinds of WEC are optimized for certain wave conditions. Numerical simulations of a heaving buoy and a bottom-hinged pendulum in a 2D wave flume with different damping types (linear and nonlinear) are presented. The results show that the difference between the calculated energy extraction from the wave height reduction and from the model power take-off (PTO) was not significant in a 2D flume. Physical model tests were conducted using a simplified PTO consisting of a system of lifting weights, used to measure the energy extraction directly. Based on both numerical and physical model analyses, the article defines WHTO, which is equivalent to energy extracted by PTO, but determined without taking direct measurements. This paper aims to promote and validate the concept of the WHTO.

Suggested Citation

  • Shi, Hongda & Zhao, Chenyu & Hann, Martyn & Greaves, Deborah & Han, Zhi & Cao, Feifei, 2019. "WHTO: A methodology of calculating the energy extraction of wave energy convertors based on wave height reduction," Energy, Elsevier, vol. 185(C), pages 299-315.
  • Handle: RePEc:eee:energy:v:185:y:2019:i:c:p:299-315
    DOI: 10.1016/j.energy.2019.07.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219314070
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.07.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Palha, Artur & Mendes, Lourenço & Fortes, Conceição Juana & Brito-Melo, Ana & Sarmento, António, 2010. "The impact of wave energy farms in the shoreline wave climate: Portuguese pilot zone case study using Pelamis energy wave devices," Renewable Energy, Elsevier, vol. 35(1), pages 62-77.
    2. Shi, Hongda & Cao, Feifei & Liu, Zhen & Qu, Na, 2016. "Theoretical study on the power take-off estimation of heaving buoy wave energy converter," Renewable Energy, Elsevier, vol. 86(C), pages 441-448.
    3. Beels, Charlotte & Troch, Peter & De Visch, Kenneth & Kofoed, Jens Peter & De Backer, Griet, 2010. "Application of the time-dependent mild-slope equations for the simulation of wake effects in the lee of a farm of Wave Dragon wave energy converters," Renewable Energy, Elsevier, vol. 35(8), pages 1644-1661.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gong, Haoxiang & Cao, Feifei & Han, Zhi & Liu, Shangze & Shi, Hongda, 2022. "Study on the wave energy capture spectrum based on wave height take-off," Energy, Elsevier, vol. 250(C).
    2. Han, Zhi & Cao, Feifei & Tao, Ji & Shi, Hongda, 2023. "Study on the energy capture spectrum (ECS) of a multi-DoF buoy under random waves," Energy, Elsevier, vol. 279(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Louise O’Boyle & Björn Elsäßer & Trevor Whittaker, 2017. "Experimental Measurement of Wave Field Variations around Wave Energy Converter Arrays," Sustainability, MDPI, vol. 9(1), pages 1-16, January.
    2. David, Daniel R. & Rijnsdorp, Dirk P. & Hansen, Jeff E. & Lowe, Ryan J. & Buckley, Mark L., 2022. "Predicting coastal impacts by wave farms: A comparison of wave-averaged and wave-resolving models," Renewable Energy, Elsevier, vol. 183(C), pages 764-780.
    3. Smith, Helen C.M. & Pearce, Charles & Millar, Dean L., 2012. "Further analysis of change in nearshore wave climate due to an offshore wave farm: An enhanced case study for the Wave Hub site," Renewable Energy, Elsevier, vol. 40(1), pages 51-64.
    4. Greenwood, Charles & Christie, David & Venugopal, Vengatesan & Morrison, James & Vogler, Arne, 2016. "Modelling performance of a small array of Wave Energy Converters: Comparison of Spectral and Boussinesq models," Energy, Elsevier, vol. 113(C), pages 258-266.
    5. Iglesias, G. & Carballo, R., 2014. "Wave farm impact: The role of farm-to-coast distance," Renewable Energy, Elsevier, vol. 69(C), pages 375-385.
    6. Luczko, Ewelina & Robertson, Bryson & Bailey, Helen & Hiles, Clayton & Buckham, Bradley, 2018. "Representing non-linear wave energy converters in coastal wave models," Renewable Energy, Elsevier, vol. 118(C), pages 376-385.
    7. Carballo, R. & Iglesias, G., 2013. "Wave farm impact based on realistic wave-WEC interaction," Energy, Elsevier, vol. 51(C), pages 216-229.
    8. Craig Jones & Grace Chang & Kaustubha Raghukumar & Samuel McWilliams & Ann Dallman & Jesse Roberts, 2018. "Spatial Environmental Assessment Tool (SEAT): A Modeling Tool to Evaluate Potential Environmental Risks Associated with Wave Energy Converter Deployments," Energies, MDPI, vol. 11(8), pages 1-19, August.
    9. Roche, R.C. & Walker-Springett, K. & Robins, P.E. & Jones, J. & Veneruso, G. & Whitton, T.A. & Piano, M. & Ward, S.L. & Duce, C.E. & Waggitt, J.J. & Walker-Springett, G.R. & Neill, S.P. & Lewis, M.J. , 2016. "Research priorities for assessing potential impacts of emerging marine renewable energy technologies: Insights from developments in Wales (UK)," Renewable Energy, Elsevier, vol. 99(C), pages 1327-1341.
    10. Halliday, J. Ross & Dorrell, David G. & Wood, Alan R., 2011. "An application of the Fast Fourier Transform to the short-term prediction of sea wave behaviour," Renewable Energy, Elsevier, vol. 36(6), pages 1685-1692.
    11. Yu, Tongshun & Shi, Hongda & Song, Wenfu, 2018. "Rotational characteristics and capture efficiency of a variable guide vane wave energy converter," Renewable Energy, Elsevier, vol. 122(C), pages 275-290.
    12. Chang, G. & Ruehl, K. & Jones, C.A. & Roberts, J. & Chartrand, C., 2016. "Numerical modeling of the effects of wave energy converter characteristics on nearshore wave conditions," Renewable Energy, Elsevier, vol. 89(C), pages 636-648.
    13. Sierra, J.P. & González-Marco, D. & Sospedra, J. & Gironella, X. & Mösso, C. & Sánchez-Arcilla, A., 2013. "Wave energy resource assessment in Lanzarote (Spain)," Renewable Energy, Elsevier, vol. 55(C), pages 480-489.
    14. Tunde Aderinto & Hua Li, 2019. "Review on Power Performance and Efficiency of Wave Energy Converters," Energies, MDPI, vol. 12(22), pages 1-24, November.
    15. Yadong Wen & Weijun Wang & Hua Liu & Longbo Mao & Hongju Mi & Wenqiang Wang & Guoping Zhang, 2018. "A Shape Optimization Method of a Specified Point Absorber Wave Energy Converter for the South China Sea," Energies, MDPI, vol. 11(10), pages 1-22, October.
    16. Bonar, Paul A.J. & Bryden, Ian G. & Borthwick, Alistair G.L., 2015. "Social and ecological impacts of marine energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 486-495.
    17. Chen, Wenchuang & Huang, Zhenhai & Zhang, Yongliang & Wang, Liguo & Huang, Luofeng, 2024. "Hydrodynamic performance of a three-unit heave wave energy converter array under different arrangement," Renewable Energy, Elsevier, vol. 221(C).
    18. Cui, Lidong & Sergiienko, Nataliia Y. & Leontini, Justin S. & Cohen, Nadav & Bennetts, Luke G. & Cazzolato, Benjamin & Turner, Ian L. & Flocard, Francois & Westcott, Amy-Rose & Cheng, Fanrui & Manasse, 2024. "Protecting coastlines by offshore wave farms: On optimising array configurations using a corrected far-field approximation," Renewable Energy, Elsevier, vol. 224(C).
    19. Mendoza, Edgar & Lithgow, Debora & Flores, Pamela & Felix, Angélica & Simas, Teresa & Silva, Rodolfo, 2019. "A framework to evaluate the environmental impact of OCEAN energy devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 440-449.
    20. Astariz, S. & Iglesias, G., 2016. "Co-located wind and wave energy farms: Uniformly distributed arrays," Energy, Elsevier, vol. 113(C), pages 497-508.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:185:y:2019:i:c:p:299-315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.