IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v183y2019icp547-560.html
   My bibliography  Save this article

Dynamics and power generation of wave energy converters mimicking biaxial hula-hoop motion for mooring-less buoys

Author

Listed:
  • Wang, Yu-Jen
  • Lee, Chih-Kuang

Abstract

In this study, a two-degree-of-freedom (2-DOF) wave energy converter (WEC) composed of an eccentric dual-axis ring and power generators using circular Halbach array magnetic disks and iron-core coils was developed. The 2-DOF WEC was designed to convert kinetic energy from the pitching, rolling, and heaving motions of a mooring-less buoy. The eccentric dual-axis ring with appropriate weighting conditions enhanced power generation by revolving in biaxial hula-hoop motion, because it exhibited a higher angular velocity than when in swing motion. Kinetic equations for the biaxial eccentric dual-axis ring mounted on the buoy were derived using the Lagrange–Euler equation. Furthermore, weighting conditions of the eccentric dual-axis ring for biaxial hula-hoop motion were determined in accordance with frequency and amplitude of regular buoy motion. The magnetic flux density, cogging torque, and electromagnetic damping of the magnetic disk were evaluated using magnetic field strength simulations and Faraday's law of induction. The 2-DOF WEC prototype was implemented, and biaxial hula-hoop motion was observed in a wave flume test. An output power of 0.56 W was generated for the primary frequency of buoy motion from 0.7 to 1.0 Hz. Results indicate the WEC is feasible as a sustainable power source for sensors on buoys.

Suggested Citation

  • Wang, Yu-Jen & Lee, Chih-Kuang, 2019. "Dynamics and power generation of wave energy converters mimicking biaxial hula-hoop motion for mooring-less buoys," Energy, Elsevier, vol. 183(C), pages 547-560.
  • Handle: RePEc:eee:energy:v:183:y:2019:i:c:p:547-560
    DOI: 10.1016/j.energy.2019.06.135
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219312678
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.06.135?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joe, Hangil & Roh, Hyunwoo & Cho, Hyeonwoo & Yu, Son-Cheol, 2017. "Development of a flap-type mooring-less wave energy harvesting system for sensor buoy," Energy, Elsevier, vol. 133(C), pages 851-863.
    2. Zhang, H.C. & Xu, D.L. & Liu, C.R. & Wu, Y.S., 2016. "Wave energy absorption of a wave farm with an array of buoys and flexible runway," Energy, Elsevier, vol. 109(C), pages 211-223.
    3. Viet, N.V. & Xie, X.D. & Liew, K.M. & Banthia, N. & Wang, Q., 2016. "Energy harvesting from ocean waves by a floating energy harvester," Energy, Elsevier, vol. 112(C), pages 1219-1226.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yongkuang & Liu, Qingshu & Gao, Feng & Zhou, Songlin & Zhang, Weidong & Chen, Weixing, 2024. "Design and modeling of wave energy converter glider (WEC-Glider) with simulation validation in wave tank experiments," Applied Energy, Elsevier, vol. 364(C).
    2. Wang, Xin & Wang, Tao & Lv, Haobin & Wang, Hao & Zeng, Fanqin, 2024. "Analytical modeling and experimental verification of a multi-DOF spherical pendulum electromagnetic energy harvester," Energy, Elsevier, vol. 286(C).
    3. Wang, LiGuo & Li, Hui & Lin, Jing & Yan, Xun & Lu, GuanYu & Wu, ShiXuan & Peng, WeiZhi, 2024. "Vibration energy harvesting from an unmanned surface vehicle: Concept design, open sea tests and harvester optimization," Renewable Energy, Elsevier, vol. 222(C).
    4. Lou, Hu & Wang, Tao & Zhu, Shiqiang, 2022. "Design, modeling and experiments of a novel biaxial-pendulum vibration energy harvester," Energy, Elsevier, vol. 254(PA).
    5. Wang, Tao & Lv, Haobin & Wang, Xin, 2024. "Development of an electromagnetic energy harvester for ultra-low frequency pitch vibration of unmanned marine devices," Applied Energy, Elsevier, vol. 353(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Tao & Lv, Haobin & Wang, Xin, 2024. "Development of an electromagnetic energy harvester for ultra-low frequency pitch vibration of unmanned marine devices," Applied Energy, Elsevier, vol. 353(PA).
    2. Jahangir, Mohammad Hossein & Hosseini, Seyed Sina & Mehrpooya, Mehdi, 2018. "A detailed theoretical modeling and parametric investigation of potential power in heaving buoys," Energy, Elsevier, vol. 154(C), pages 201-209.
    3. Berenjkoob, Mahdi Nazari & Ghiasi, Mahmoud & Soares, C.Guedes, 2021. "Influence of the shape of a buoy on the efficiency of its dual-motion wave energy conversion," Energy, Elsevier, vol. 214(C).
    4. Alluri, Nagamalleswara Rao & Selvarajan, Sophia & Chandrasekhar, Arunkumar & Saravanakumar, Balasubramaniam & Lee, Gae Myoung & Jeong, Ji Hyun & Kim, Sang-Jae, 2017. "Worm structure piezoelectric energy harvester using ionotropic gelation of barium titanate-calcium alginate composite," Energy, Elsevier, vol. 118(C), pages 1146-1155.
    5. Cai, Wenzheng & Roussinova, Vesselina & Stoilov, Vesselin, 2022. "Piezoelectric wave energy harvester," Renewable Energy, Elsevier, vol. 196(C), pages 973-982.
    6. Xiao, Han & Liu, Zhenwei & Zhang, Ran & Kelham, Andrew & Xu, Xiangyang & Wang, Xu, 2021. "Study of a novel rotational speed amplified dual turbine wheel wave energy converter," Applied Energy, Elsevier, vol. 301(C).
    7. Zhang, Haicheng & Xu, Daolin & Ding, Rui & Zhao, Huai & Lu, Ye & Wu, Yousheng, 2019. "Embedded Power Take-Off in hinged modularized floating platform for wave energy harvesting and pitch motion suppression," Renewable Energy, Elsevier, vol. 138(C), pages 1176-1188.
    8. Zhang, Haicheng & Xu, Daolin & Zhao, Huai & Xia, Shuyan & Wu, Yousheng, 2018. "Energy extraction of wave energy converters embedded in a very large modularized floating platform," Energy, Elsevier, vol. 158(C), pages 317-329.
    9. Bao, Bin & Chen, Wen & Wang, Quan, 2019. "A piezoelectric hydro-energy harvester featuring a special container structure," Energy, Elsevier, vol. 189(C).
    10. Pan, Yu & Lin, Teng & Qian, Feng & Liu, Cheng & Yu, Jie & Zuo, Jianyong & Zuo, Lei, 2019. "Modeling and field-test of a compact electromagnetic energy harvester for railroad transportation," Applied Energy, Elsevier, vol. 247(C), pages 309-321.
    11. Li, Zhongjie & Jiang, Xiaomeng & Yin, Peilun & Tang, Lihua & Wu, Hao & Peng, Yan & Luo, Jun & Xie, Shaorong & Pu, Huayan & Wang, Daifeng, 2021. "Towards self-powered technique in underwater robots via a high-efficiency electromagnetic transducer with circularly abrupt magnetic flux density change," Applied Energy, Elsevier, vol. 302(C).
    12. Wang, Feng & Sun, Xiuting & Xu, Jian, 2018. "A novel energy harvesting device for ultralow frequency excitation," Energy, Elsevier, vol. 151(C), pages 250-260.
    13. Gharechae, Ataollah & Abazari, Abuzar & Ketabdari, Mohammad Javad, 2022. "A semi-analytical solution for energy harvesting via the elastic motion of the circular floater of aquaculture cages attached with piezoelectric," Renewable Energy, Elsevier, vol. 196(C), pages 181-194.
    14. Zhou, Zhiyong & Qin, Weiyang & Zhu, Pei & Shang, Shijie, 2018. "Scavenging wind energy by a Y-shaped bi-stable energy harvester with curved wings," Energy, Elsevier, vol. 153(C), pages 400-412.
    15. Sani, Godwin & Balaram, Bipin & Kudra, Grzegorz & Awrejcewicz, Jan, 2024. "Energy harvesting from friction-induced vibrations in vehicle braking systems in the presence of rotary unbalances," Energy, Elsevier, vol. 289(C).
    16. Li, Yunfei & Ma, Xin & Tang, Tianyi & Zha, Fusheng & Chen, Zhaohui & Liu, Huicong & Sun, Lining, 2022. "High-efficient built-in wave energy harvesting technology: From laboratory to open ocean test," Applied Energy, Elsevier, vol. 322(C).
    17. Jin, Huaqing & Zhang, Haicheng & Xu, Daolin & Jun, Ding & Ze, Sun, 2022. "Low-frequency energy capture and water wave attenuation of a hybrid WEC-breakwater with nonlinear stiffness," Renewable Energy, Elsevier, vol. 196(C), pages 1029-1047.
    18. Kong, Weihua & He, Liujin & Hao, Daning & Wu, Xiaoping & Xiao, Luo & Zhang, Zutao & Xu, Yongsheng & Azam, Ali, 2023. "A wave energy harvester based on an ultra-low frequency synergistic PTO for intelligent fisheries," Renewable Energy, Elsevier, vol. 217(C).
    19. Du, Xiaozhen & Li, Pengkai & Li, Zihao & Liu, Xiaotong & Wang, Wenxiu & Feng, Quanheng & Du, Lixiang & Yu, Hong & Wang, Jianjun & Xie, Xiangdong & Tang, Lihua, 2024. "Multi-pillar piezoelectric stack harvests ocean wave energy with oscillating float buoy," Energy, Elsevier, vol. 298(C).
    20. Chiu, Min-Chie & Karkoub, Mansour & Her, Ming-Guo, 2020. "Two-magnet energy harvesting device for charging submersable sensors," Renewable Energy, Elsevier, vol. 152(C), pages 120-137.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:183:y:2019:i:c:p:547-560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.