IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i9p1348-d111114.html
   My bibliography  Save this article

A Floating Platform with Embedded Wave Energy Harvesting Arrays in Regular and Irregular Seas

Author

Listed:
  • Hai-Cheng Zhang

    (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China)

  • Dao-Lin Xu

    (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China)

  • Chun-Rong Liu

    (School of Civil Engineering & Architecture, Xiamen University of Technology, Xiamen 316005, China)

  • You-Sheng Wu

    (China Ship Scientific Research Center, Wuxi 214082, China)

Abstract

This paper presents a study on a cost-effective engineering model that integrates an array of floating wave energy converters with a vast platform, a viable option for multi-functional performance in renewable energy capture and ocean space utilization. The wave energy converters are floating buoyance columns flexibly connected with the elastic platform. Hydrodynamic interactions among the columns are analyzed using an exact matrix transform method based on linear wave theory in the frequency domain. A parametric governing equation of compounded wave energy converter referred to as a wave farm is formulated by using Hamilton’s principle which can be discretized using the Galerkin method. The effects of wave conditions and the parameters of hydraulic power take-off (PTO) on the wave energy absorption and dynamic characteristics of the energy harvesting system are investigated. Furthermore, the wave energy capture on irregular waves is also discussed. This research work aims at providing a theoretical guidance for wave energy harvesting system design.

Suggested Citation

  • Hai-Cheng Zhang & Dao-Lin Xu & Chun-Rong Liu & You-Sheng Wu, 2017. "A Floating Platform with Embedded Wave Energy Harvesting Arrays in Regular and Irregular Seas," Energies, MDPI, vol. 10(9), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1348-:d:111114
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/9/1348/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/9/1348/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vincenzo Franzitta & Domenico Curto & Davide Rao, 2016. "Energetic Sustainability Using Renewable Energies in the Mediterranean Sea," Sustainability, MDPI, vol. 8(11), pages 1-16, November.
    2. Fiaschi, D. & Manfrida, G. & Secchi, R. & Tempesti, D., 2012. "A versatile system for offshore energy conversion including diversified storage," Energy, Elsevier, vol. 48(1), pages 566-576.
    3. Zhang, H.C. & Xu, D.L. & Liu, C.R. & Wu, Y.S., 2016. "Wave energy absorption of a wave farm with an array of buoys and flexible runway," Energy, Elsevier, vol. 109(C), pages 211-223.
    4. Vincenzo Franzitta & Pietro Catrini & Domenico Curto, 2017. "Wave Energy Assessment along Sicilian Coastline, Based on DEIM Point Absorber," Energies, MDPI, vol. 10(3), pages 1-15, March.
    5. Fadaee, M. & Radzi, M.A.M., 2012. "Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3364-3369.
    6. Hughes, Michael G. & Heap, Andrew D., 2010. "National-scale wave energy resource assessment for Australia," Renewable Energy, Elsevier, vol. 35(8), pages 1783-1791.
    7. Kim, Gunwoo & Jeong, Weon Mu & Lee, Kwang Soo & Jun, Kicheon & Lee, Myung Eun, 2011. "Offshore and nearshore wave energy assessment around the Korean Peninsula," Energy, Elsevier, vol. 36(3), pages 1460-1469.
    8. Hartono, Wibisono, 2002. "A floating tied platform for generating energy from ocean current," Renewable Energy, Elsevier, vol. 25(1), pages 15-20.
    9. Stefania Naty & Antonino Viviano & Enrico Foti, 2016. "Wave Energy Exploitation System Integrated in the Coastal Structure of a Mediterranean Port," Sustainability, MDPI, vol. 8(12), pages 1-19, December.
    10. Vincenzo Franzitta & Domenico Curto, 2017. "Sustainability of the Renewable Energy Extraction Close to the Mediterranean Islands," Energies, MDPI, vol. 10(3), pages 1-19, February.
    11. He, Fang & Huang, Zhenhua & Law, Adrian Wing-Keung, 2013. "An experimental study of a floating breakwater with asymmetric pneumatic chambers for wave energy extraction," Applied Energy, Elsevier, vol. 106(C), pages 222-231.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bao, Jian & Yu, Dingyong, 2024. "Hydrodynamic performance optimization of a cost-effective WEC-type floating breakwater with half-airfoil bottom," Renewable Energy, Elsevier, vol. 226(C).
    2. Wang, Yuhan & Dong, Sheng, 2022. "Array of concentric perforated cylindrical systems with torus oscillating bodies integrated on inner cylinders," Applied Energy, Elsevier, vol. 327(C).
    3. Jinming Wu & Yingxue Yao & Liang Zhou & Malin Göteman, 2017. "Latching and Declutching Control of the Solo Duck Wave-Energy Converter with Different Load Types," Energies, MDPI, vol. 10(12), pages 1-18, December.
    4. Xiaohui Zeng & Qi Wang & Yuanshun Kang & Fajun Yu, 2022. "A Novel Type of Wave Energy Converter with Five Degrees of Freedom and Preliminary Investigations on Power-Generating Capacity," Energies, MDPI, vol. 15(9), pages 1-20, April.
    5. Zhang, Haicheng & Xu, Daolin & Zhao, Huai & Xia, Shuyan & Wu, Yousheng, 2018. "Energy extraction of wave energy converters embedded in a very large modularized floating platform," Energy, Elsevier, vol. 158(C), pages 317-329.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Haicheng & Xu, Daolin & Zhao, Huai & Xia, Shuyan & Wu, Yousheng, 2018. "Energy extraction of wave energy converters embedded in a very large modularized floating platform," Energy, Elsevier, vol. 158(C), pages 317-329.
    2. Fadaeenejad, M. & Shamsipour, R. & Rokni, S.D. & Gomes, C., 2014. "New approaches in harnessing wave energy: With special attention to small islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 345-354.
    3. Curto, Domenico & Favuzza, Salvatore & Franzitta, Vincenzo & Guercio, Andrea & Amparo Navarro Navia, Milagros & Telaretti, Enrico & Zizzo, Gaetano, 2022. "Grid Stability Improvement Using Synthetic Inertia by Battery Energy Storage Systems in Small Islands," Energy, Elsevier, vol. 254(PC).
    4. Zhao, Huai & Zhang, Haicheng & Bi, Rengui & Xi, Ru & Xu, Daolin & Shi, Qijia & Wu, Bo, 2020. "Enhancing efficiency of a point absorber bistable wave energy converter under low wave excitations," Energy, Elsevier, vol. 212(C).
    5. Joan Pau Sierra & Ricard Castrillo & Marc Mestres & César Mösso & Piero Lionello & Luigi Marzo, 2020. "Impact of Climate Change on Wave Energy Resource in the Mediterranean Coast of Morocco," Energies, MDPI, vol. 13(11), pages 1-19, June.
    6. Ciappi, Lorenzo & Simonetti, Irene & Bianchini, Alessandro & Cappietti, Lorenzo & Manfrida, Giampaolo, 2022. "Application of integrated wave-to-wire modelling for the preliminary design of oscillating water column systems for installations in moderate wave climates," Renewable Energy, Elsevier, vol. 194(C), pages 232-248.
    7. Wang, Zhifeng & Dong, Sheng & Li, Xue & Guedes Soares, C., 2016. "Assessments of wave energy in the Bohai Sea, China," Renewable Energy, Elsevier, vol. 90(C), pages 145-156.
    8. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    9. Pasquale Contestabile & Vincenzo Ferrante & Diego Vicinanza, 2015. "Wave Energy Resource along the Coast of Santa Catarina (Brazil)," Energies, MDPI, vol. 8(12), pages 1-25, December.
    10. Soomere, Tarmo & Eelsalu, Maris, 2014. "On the wave energy potential along the eastern Baltic Sea coast," Renewable Energy, Elsevier, vol. 71(C), pages 221-233.
    11. Yu Zhou & Chongwei Zhang & Dezhi Ning, 2018. "Hydrodynamic Investigation of a Concentric Cylindrical OWC Wave Energy Converter," Energies, MDPI, vol. 11(4), pages 1-23, April.
    12. Pasquale Contestabile & Enrico Di Lauro & Paolo Galli & Cesare Corselli & Diego Vicinanza, 2017. "Offshore Wind and Wave Energy Assessment around Malè and Magoodhoo Island (Maldives)," Sustainability, MDPI, vol. 9(4), pages 1-24, April.
    13. Aboobacker, V.M., 2017. "Wave energy resource assessment for eastern Bay of Bengal and Malacca Strait," Renewable Energy, Elsevier, vol. 114(PA), pages 72-84.
    14. Liang, Bingchen & Fan, Fei & Liu, Fushun & Gao, Shanhong & Zuo, Hongyan, 2014. "22-Year wave energy hindcast for the China East Adjacent Seas," Renewable Energy, Elsevier, vol. 71(C), pages 200-207.
    15. Francisco Haces-Fernandez & Hua Li & David Ramirez, 2018. "Assessment of the Potential of Energy Extracted from Waves and Wind to Supply Offshore Oil Platforms Operating in the Gulf of Mexico," Energies, MDPI, vol. 11(5), pages 1-25, April.
    16. Addy Wahyudie & Tri Bagus Susilo & Fatima Alaryani & Cuk Supriyadi Ali Nandar & Mohammed Abdi Jama & Abdulrahman Daher & Hussain Shareef, 2020. "Wave Power Assessment in the Middle Part of the Southern Coast of Java Island," Energies, MDPI, vol. 13(10), pages 1-19, May.
    17. Foteinis, Spyros, 2022. "Wave energy converters in low energy seas: Current state and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    18. Morim, Joao & Cartwright, Nick & Etemad-Shahidi, Amir & Strauss, Darrell & Hemer, Mark, 2016. "Wave energy resource assessment along the Southeast coast of Australia on the basis of a 31-year hindcast," Applied Energy, Elsevier, vol. 184(C), pages 276-297.
    19. De Zhi Ning & Xuan Lie Zhao & Li Fen Chen & Ming Zhao, 2018. "Hydrodynamic Performance of an Array of Wave Energy Converters Integrated with a Pontoon-Type Breakwater," Energies, MDPI, vol. 11(3), pages 1-17, March.
    20. Sierra, J.P. & González-Marco, D. & Sospedra, J. & Gironella, X. & Mösso, C. & Sánchez-Arcilla, A., 2013. "Wave energy resource assessment in Lanzarote (Spain)," Renewable Energy, Elsevier, vol. 55(C), pages 480-489.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1348-:d:111114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.