IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v71y2014icp8-17.html
   My bibliography  Save this article

Wave energy potential along the western Portuguese coast

Author

Listed:
  • Mota, P.
  • Pinto, J.P.

Abstract

An assessment of nearshore wave energy resource along the Portuguese coast is presented, focusing on identify appropriate locations for testing and developing Wave Energy Converter (WEC) for commercial exploit. The analysis covers the whole west seaside, to which a partition defined by 7 linear sections parallel to the coastline at 50 m depth was considered. Available wave energy at each linear sector was calculated from nearshore wave parameters, using as input the offshore wave conditions provided by a 15-year ocean wind-wave model simulation and considering a simplified but well-established analytical procedure for shoreward wave transformation. Two alternative measures of the nearshore wave energy resource were considered, the standard omni-directional wave power density and the more restricted normally-directed wave energy flux.

Suggested Citation

  • Mota, P. & Pinto, J.P., 2014. "Wave energy potential along the western Portuguese coast," Renewable Energy, Elsevier, vol. 71(C), pages 8-17.
  • Handle: RePEc:eee:renene:v:71:y:2014:i:c:p:8-17
    DOI: 10.1016/j.renene.2014.02.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811400130X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.02.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rusu, Eugen & Guedes Soares, C., 2009. "Numerical modelling to estimate the spatial distribution of the wave energy in the Portuguese nearshore," Renewable Energy, Elsevier, vol. 34(6), pages 1501-1516.
    2. Iglesias, G. & López, M. & Carballo, R. & Castro, A. & Fraguela, J.A. & Frigaard, P., 2009. "Wave energy potential in Galicia (NW Spain)," Renewable Energy, Elsevier, vol. 34(11), pages 2323-2333.
    3. Clément, Alain & McCullen, Pat & Falcão, António & Fiorentino, Antonio & Gardner, Fred & Hammarlund, Karin & Lemonis, George & Lewis, Tony & Nielsen, Kim & Petroncini, Simona & Pontes, M. -Teresa & Sc, 2002. "Wave energy in Europe: current status and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(5), pages 405-431, October.
    4. Folley, M. & Whittaker, T.J.T., 2009. "Analysis of the nearshore wave energy resource," Renewable Energy, Elsevier, vol. 34(7), pages 1709-1715.
    5. Gunn, Kester & Stock-Williams, Clym, 2012. "Quantifying the global wave power resource," Renewable Energy, Elsevier, vol. 44(C), pages 296-304.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guillou, Nicolas & Chapalain, Georges, 2018. "Annual and seasonal variabilities in the performances of wave energy converters," Energy, Elsevier, vol. 165(PB), pages 812-823.
    2. Ribeiro, A.S. & deCastro, M. & Costoya, X. & Rusu, Liliana & Dias, J.M. & Gomez-Gesteira, M., 2021. "A Delphi method to classify wave energy resource for the 21st century: Application to the NW Iberian Peninsula," Energy, Elsevier, vol. 235(C).
    3. Kilcher, Levi & García Medina, Gabriel & Yang, Zhaoqing, 2023. "A scalable wave resource assessment methodology: Application to U.S. waters," Renewable Energy, Elsevier, vol. 217(C).
    4. Arguilé-Pérez, B. & Ribeiro, A.S. & Costoya, X. & deCastro, M. & Gómez-Gesteira, M., 2023. "Suitability of wave energy converters in northwestern Spain under the near future winter wave climate," Energy, Elsevier, vol. 278(PB).
    5. Morim, Joao & Cartwright, Nick & Etemad-Shahidi, Amir & Strauss, Darrell & Hemer, Mark, 2016. "Wave energy resource assessment along the Southeast coast of Australia on the basis of a 31-year hindcast," Applied Energy, Elsevier, vol. 184(C), pages 276-297.
    6. Sierra, J.P. & Martín, C. & Mösso, C. & Mestres, M. & Jebbad, R., 2016. "Wave energy potential along the Atlantic coast of Morocco," Renewable Energy, Elsevier, vol. 96(PA), pages 20-32.
    7. Zanous, Sina Pasha & Shafaghat, Rouzbeh & Alamian, Rezvan & Shadloo, Mostafa Safdari & Khosravi, Mohammad, 2019. "Feasibility study of wave energy harvesting along the southern coast and islands of Iran," Renewable Energy, Elsevier, vol. 135(C), pages 502-514.
    8. Sanil Kumar, V. & Anoop, T.R., 2015. "Wave energy resource assessment for the Indian shelf seas," Renewable Energy, Elsevier, vol. 76(C), pages 212-219.
    9. Chen, Xinping & Wang, Kaimin & Zhang, Zenghai & Zeng, Yindong & Zhang, Yao & O'Driscoll, Kieran, 2017. "An assessment of wind and wave climate as potential sources of renewable energy in the nearshore Shenzhen coastal zone of the South China Sea," Energy, Elsevier, vol. 134(C), pages 789-801.
    10. Anastas, Gael & Alfredo Santos, João & Fortes, C.J.E.M. & Pinheiro, Liliana V., 2022. "Energy assessment of potential locations for OWC instalation at the Portuguese coast," Renewable Energy, Elsevier, vol. 200(C), pages 37-47.
    11. Américo S. Ribeiro & Maite deCastro & Liliana Rusu & Mariana Bernardino & João M. Dias & Moncho Gomez-Gesteira, 2020. "Evaluating the Future Efficiency of Wave Energy Converters along the NW Coast of the Iberian Peninsula," Energies, MDPI, vol. 13(14), pages 1-15, July.
    12. Blažauskas, Nerijus & Pašilis, Aleksas & Knolis, Audrius, 2015. "Potential applications for small scale wave energy installations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 297-305.
    13. Mediavilla, D.G. & Sepúlveda, H.H., 2016. "Nearshore assessment of wave energy resources in central Chile (2009–2010)," Renewable Energy, Elsevier, vol. 90(C), pages 136-144.
    14. Eduardo Medeiros & Bernardo Valente & Vasco Gonçalves & Paula Castro, 2022. "How Impactful Are Public Policies on Environmental Sustainability? Debating the Portuguese Case of PO SEUR 2014–2020," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
    15. Lopes de Almeida, J.P.P.G. & Mujtaba, B. & Oliveira Fernandes, A.M., 2018. "Preliminary laboratorial determination of the REEFS novel wave energy converter power output," Renewable Energy, Elsevier, vol. 122(C), pages 654-664.
    16. Nicolas Guillou & George Lavidas & Bahareh Kamranzad, 2023. "Wave Energy in Brittany (France)—Resource Assessment and WEC Performances," Sustainability, MDPI, vol. 15(2), pages 1-27, January.
    17. Joan Pau Sierra & Ricard Castrillo & Marc Mestres & César Mösso & Piero Lionello & Luigi Marzo, 2020. "Impact of Climate Change on Wave Energy Resource in the Mediterranean Coast of Morocco," Energies, MDPI, vol. 13(11), pages 1-19, June.
    18. Soumya Ghosh & Mrinmoy Majumder & Manish Pal, 2018. "Application of metaheuristic algorithm to identify priority parameters for the selection of feasible location having optimum wave energy potential," Energy & Environment, , vol. 29(1), pages 3-28, February.
    19. Bertram, D.V. & Tarighaleslami, A.H. & Walmsley, M.R.W. & Atkins, M.J. & Glasgow, G.D.E., 2020. "A systematic approach for selecting suitable wave energy converters for potential wave energy farm sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    20. Valentina Vannucchi & Lorenzo Cappietti, 2016. "Wave Energy Assessment and Performance Estimation of State of the Art Wave Energy Converters in Italian Hotspots," Sustainability, MDPI, vol. 8(12), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    2. Liang, Bingchen & Fan, Fei & Liu, Fushun & Gao, Shanhong & Zuo, Hongyan, 2014. "22-Year wave energy hindcast for the China East Adjacent Seas," Renewable Energy, Elsevier, vol. 71(C), pages 200-207.
    3. Bozzi, Silvia & Archetti, Renata & Passoni, Giuseppe, 2014. "Wave electricity production in Italian offshore: A preliminary investigation," Renewable Energy, Elsevier, vol. 62(C), pages 407-416.
    4. Sierra, J.P. & González-Marco, D. & Sospedra, J. & Gironella, X. & Mösso, C. & Sánchez-Arcilla, A., 2013. "Wave energy resource assessment in Lanzarote (Spain)," Renewable Energy, Elsevier, vol. 55(C), pages 480-489.
    5. Guillou, Nicolas & Chapalain, Georges, 2015. "Numerical modelling of nearshore wave energy resource in the Sea of Iroise," Renewable Energy, Elsevier, vol. 83(C), pages 942-953.
    6. Chen, Xinping & Wang, Kaimin & Zhang, Zenghai & Zeng, Yindong & Zhang, Yao & O'Driscoll, Kieran, 2017. "An assessment of wind and wave climate as potential sources of renewable energy in the nearshore Shenzhen coastal zone of the South China Sea," Energy, Elsevier, vol. 134(C), pages 789-801.
    7. Khojasteh, Danial & Khojasteh, Davood & Kamali, Reza & Beyene, Asfaw & Iglesias, Gregorio, 2018. "Assessment of renewable energy resources in Iran; with a focus on wave and tidal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2992-3005.
    8. Sierra, J.P. & Mösso, C. & González-Marco, D., 2014. "Wave energy resource assessment in Menorca (Spain)," Renewable Energy, Elsevier, vol. 71(C), pages 51-60.
    9. Iglesias, G. & Carballo, R., 2014. "Wave farm impact: The role of farm-to-coast distance," Renewable Energy, Elsevier, vol. 69(C), pages 375-385.
    10. Bento, A. Rute & Martinho, Paulo & Guedes Soares, C., 2018. "Wave energy assessement for Northern Spain from a 33-year hindcast," Renewable Energy, Elsevier, vol. 127(C), pages 322-333.
    11. Iglesias, G. & Carballo, R., 2011. "Choosing the site for the first wave farm in a region: A case study in the Galician Southwest (Spain)," Energy, Elsevier, vol. 36(9), pages 5525-5531.
    12. Silva, Dina & Martinho, Paulo & Guedes Soares, C., 2018. "Wave energy distribution along the Portuguese continental coast based on a thirty three years hindcast," Renewable Energy, Elsevier, vol. 127(C), pages 1064-1075.
    13. Liang, Bingchen & Fan, Fei & Yin, Zegao & Shi, Hongda & Lee, Dongyong, 2013. "Numerical modelling of the nearshore wave energy resources of Shandong peninsula, China," Renewable Energy, Elsevier, vol. 57(C), pages 330-338.
    14. Pasquale Contestabile & Vincenzo Ferrante & Diego Vicinanza, 2015. "Wave Energy Resource along the Coast of Santa Catarina (Brazil)," Energies, MDPI, vol. 8(12), pages 1-25, December.
    15. Soomere, Tarmo & Eelsalu, Maris, 2014. "On the wave energy potential along the eastern Baltic Sea coast," Renewable Energy, Elsevier, vol. 71(C), pages 221-233.
    16. Rusu, Liliana & Guedes Soares, C., 2012. "Wave energy assessments in the Azores islands," Renewable Energy, Elsevier, vol. 45(C), pages 183-196.
    17. Wanan Sheng & Hui Li & Jimmy Murphy, 2017. "An Improved Method for Energy and Resource Assessment of Waves in Finite Water Depths," Energies, MDPI, vol. 10(8), pages 1-17, August.
    18. Halliday, J. Ross & Dorrell, David G. & Wood, Alan R., 2011. "An application of the Fast Fourier Transform to the short-term prediction of sea wave behaviour," Renewable Energy, Elsevier, vol. 36(6), pages 1685-1692.
    19. Sierra, J.P. & Martín, C. & Mösso, C. & Mestres, M. & Jebbad, R., 2016. "Wave energy potential along the Atlantic coast of Morocco," Renewable Energy, Elsevier, vol. 96(PA), pages 20-32.
    20. Aboobacker, V.M., 2017. "Wave energy resource assessment for eastern Bay of Bengal and Malacca Strait," Renewable Energy, Elsevier, vol. 114(PA), pages 72-84.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:71:y:2014:i:c:p:8-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.