IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v106y2016icp378-389.html
   My bibliography  Save this article

Multidisciplinary approaches to metallic bipolar plate design with bypass flow fields through deformable gas diffusion media of polymer electrolyte fuel cells

Author

Listed:
  • Kim, Ah-Reum
  • Shin, Seungho
  • Um, Sukkee

Abstract

In this study, multidisciplinary approaches to optimizing serpentine gas flow channels stamped on sheet metal with various design parameters (i.e., channel-to-rib width ratio, draft angle, inner fillet radius, and channel depth) are implemented to identify the fluid–structure interaction characteristics of locally deformed gas diffusion media (GDM) and the rate of entropy generation for bypass flow through the porous GDM. First, static structural analysis is conducted to demonstrate the GDM deformation by stack compression and its mechanical effects on fluidic properties of GDM experimentally and numerically. The GDM-channel model results agree with the experimental results within a maximum error of less than 10%. Emphasis is placed on understanding how the reactant gas flow through GDM effectively transports the oxygen gas to catalyst layers. Next, parametric studies are conducted to identify the dominant design effects on the fluidic performance over the entire computational domain. Subsequently, a design optimization method is applied to obtain the most favorable flow channel designs with trapezoidal cross-sections. In the optimized serpentine channel design, the maximized oxygen transport ratio is predicted to be 0.718 at the interface between the GDM and catalyst layers under the constraint of total pressure drop.

Suggested Citation

  • Kim, Ah-Reum & Shin, Seungho & Um, Sukkee, 2016. "Multidisciplinary approaches to metallic bipolar plate design with bypass flow fields through deformable gas diffusion media of polymer electrolyte fuel cells," Energy, Elsevier, vol. 106(C), pages 378-389.
  • Handle: RePEc:eee:energy:v:106:y:2016:i:c:p:378-389
    DOI: 10.1016/j.energy.2016.03.073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216303176
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.03.073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kongstein, O.E. & Berning, T. & Børresen, B. & Seland, F. & Tunold, R., 2007. "Polymer electrolyte fuel cells based on phosphoric acid doped polybenzimidazole (PBI) membranes," Energy, Elsevier, vol. 32(4), pages 418-422.
    2. Carton, J.G. & Olabi, A.G., 2010. "Design of experiment study of the parameters that affect performance of three flow plate configurations of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 35(7), pages 2796-2806.
    3. Lv, Xiaojing & Lu, Chaohao & Wang, Yuzhang & Weng, Yiwu, 2015. "Effect of operating parameters on a hybrid system of intermediate-temperature solid oxide fuel cell and gas turbine," Energy, Elsevier, vol. 91(C), pages 10-19.
    4. Huang, Yu-Xian & Cheng, Chin-Hsiang & Wang, Xiao-Dong & Jang, Jiin-Yuh, 2010. "Effects of porosity gradient in gas diffusion layers on performance of proton exchange membrane fuel cells," Energy, Elsevier, vol. 35(12), pages 4786-4794.
    5. Iranzo, Alfredo & Boillat, Pierre & Biesdorf, Johannes & Salva, Antonio, 2015. "Investigation of the liquid water distributions in a 50 cm2 PEM fuel cell: Effects of reactants relative humidity, current density, and cathode stoichiometry," Energy, Elsevier, vol. 82(C), pages 914-921.
    6. Poornesh, K.K. & Cho, Chongdu & Kim, Do-Young & Tak, Yongsug, 2010. "Effect of gas-diffusion electrode material heterogeneity on the structural integrity of polymer electrolyte fuel cell," Energy, Elsevier, vol. 35(12), pages 5241-5249.
    7. Al-Hadeethi, Farqad & Al-Nimr, Moh'd & Al-Safadi, Mohammad, 2015. "Using the multiple regression analysis with respect to ANOVA and 3D mapping to model the actual performance of PEM (proton exchange membrane) fuel cell at various operating conditions," Energy, Elsevier, vol. 90(P1), pages 475-482.
    8. Carton, J.G. & Lawlor, V. & Olabi, A.G. & Hochenauer, C. & Zauner, G., 2012. "Water droplet accumulation and motion in PEM (Proton Exchange Membrane) fuel cell mini-channels," Energy, Elsevier, vol. 39(1), pages 63-73.
    9. Sciacovelli, Adriano & Verda, Vittorio, 2009. "Entropy generation analysis in a monolithic-type solid oxide fuel cell (SOFC)," Energy, Elsevier, vol. 34(7), pages 850-865.
    10. Kim, Ah-Reum & Jung, Hye-Mi & Um, Sukkee, 2014. "An engineering approach to optimal metallic bipolar plate designs reflecting gas diffusion layer compression effects," Energy, Elsevier, vol. 66(C), pages 50-55.
    11. Hu, Qinghui & Zhang, Dongming & Fu, Hao, 2015. "Effect of flow-field dimensions on the formability of Fe–Ni–Cr alloy as bipolar plate for PEM (proton exchange membrane) fuel cell," Energy, Elsevier, vol. 83(C), pages 156-163.
    12. Huang, Kaikai & Zhang, Dongming & Hu, Mingming & Hu, Qinghui, 2014. "Cr2O3/C composite coatings on stainless steel 304 as bipolar plate for proton exchange membrane fuel cell," Energy, Elsevier, vol. 76(C), pages 816-821.
    13. Khan, Aziz & Nath, Bhabesh Kumar & Chutia, Joyanti, 2015. "Conical nano-structure arrays of Platinum cathode catalyst for enhanced cell performance in PEMFC (proton exchange membrane fuel cell)," Energy, Elsevier, vol. 90(P2), pages 1769-1774.
    14. Yao, Shi-Chune & Tang, Xudong & Hsieh, Cheng-Chieh & Alyousef, Yousef & Vladimer, Michael & Fedder, Gary K. & Amon, Cristina H., 2006. "Micro-electro-mechanical systems (MEMS)-based micro-scale direct methanol fuel cell development," Energy, Elsevier, vol. 31(5), pages 636-649.
    15. Ren, Zhijun & Zhang, Dongming & Wang, Zaiyi, 2012. "Stacks with TiN/titanium as the bipolar plate for PEMFCs," Energy, Elsevier, vol. 48(1), pages 577-581.
    16. Ferreira, Rui B. & Falcão, D.S. & Oliveira, V.B. & Pinto, A.M.F.R., 2015. "Numerical simulations of two-phase flow in an anode gas channel of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 82(C), pages 619-628.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rostami, Leila & Haghshenasfard, Masoud & Sadeghi, Morteza & Zhiani, Mohammad, 2022. "A 3D CFD model of novel flow channel designs based on the serpentine and the parallel design for performance enhancement of PEMFC," Energy, Elsevier, vol. 258(C).
    2. Xiong, Kangning & Wu, Wei & Wang, Shuangfeng & Zhang, Lin, 2021. "Modeling, design, materials and fabrication of bipolar plates for proton exchange membrane fuel cell: A review," Applied Energy, Elsevier, vol. 301(C).
    3. Wilberforce, Tabbi & El Hassan, Zaki & Ogungbemi, Emmanuel & Ijaodola, O. & Khatib, F.N. & Durrant, A. & Thompson, J. & Baroutaji, A. & Olabi, A.G., 2019. "A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 236-260.
    4. Wu, Horng-Wen & Shih, Gin-Jang & Chen, Yi-Bin, 2018. "Effect of operational parameters on transport and performance of a PEM fuel cell with the best protrusive gas diffusion layer arrangement," Applied Energy, Elsevier, vol. 220(C), pages 47-58.
    5. Liu, Jiawen & Shin, Seungho & Um, Sukkee, 2019. "Comprehensive statistical analysis of heterogeneous transport characteristics in multifunctional porous gas diffusion layers using lattice Boltzmann method for fuel cell applications," Renewable Energy, Elsevier, vol. 139(C), pages 279-291.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boyaci San, Fatma Gül & Isik-Gulsac, Isil & Okur, Osman, 2013. "Analysis of the polymer composite bipolar plate properties on the performance of PEMFC (polymer electrolyte membrane fuel cells) by RSM (response surface methodology)," Energy, Elsevier, vol. 55(C), pages 1067-1075.
    2. Kariya, Tetsuro & Yanagimoto, Katsu & Funakubo, Hiroshi & Shudo, Toshio, 2015. "Effects of porous flow field type separators using sintered Ni-based alloy powders on interfacial contact resistances and fuel cell performances," Energy, Elsevier, vol. 87(C), pages 134-141.
    3. Abdollahzadeh, M. & Ribeirinha, P. & Boaventura, M. & Mendes, A., 2018. "Three-dimensional modeling of PEMFC with contaminated anode fuel," Energy, Elsevier, vol. 152(C), pages 939-959.
    4. Xing, Lei & Du, Shangfeng & Chen, Rui & Mamlouk, Mohamed & Scott, Keith, 2016. "Anode partial flooding modelling of proton exchange membrane fuel cells: Model development and validation," Energy, Elsevier, vol. 96(C), pages 80-95.
    5. Díaz, Manuel Antonio & Iranzo, Alfredo & Rosa, Felipe & Isorna, Fernando & López, Eduardo & Bolivar, Juan Pedro, 2015. "Effect of carbon dioxide on the contamination of low temperature and high temperature PEM (polymer electrolyte membrane) fuel cells. Influence of temperature, relative humidity and analysis of regener," Energy, Elsevier, vol. 90(P1), pages 299-309.
    6. An, Myung-Gi & Mehmood, Asad & Hwang, Jinyeon & Ha, Heung Yong, 2016. "A novel method of methanol concentration control through feedback of the amplitudes of output voltage fluctuations for direct methanol fuel cells," Energy, Elsevier, vol. 100(C), pages 217-226.
    7. Chou, Chang-Chen & Liu, Cheng-Hong & Chen, Bing-Hung, 2014. "Effects of reduction temperature and pH value of polyol process on reduced graphene oxide supported Pt electrocatalysts for oxygen reduction reaction," Energy, Elsevier, vol. 70(C), pages 231-238.
    8. Afshari, E. & Mosharaf-Dehkordi, M. & Rajabian, H., 2017. "An investigation of the PEM fuel cells performance with partially restricted cathode flow channels and metal foam as a flow distributor," Energy, Elsevier, vol. 118(C), pages 705-715.
    9. Arlt, Tobias & Klages, Merle & Messerschmidt, Matthias & Scholta, Joachim & Manke, Ingo, 2017. "Influence of artificially aged gas diffusion layers on the water management of polymer electrolyte membrane fuel cells analyzed with in-operando synchrotron imaging," Energy, Elsevier, vol. 118(C), pages 502-511.
    10. Fofana, Daouda & Natarajan, Sadesh Kumar & Hamelin, Jean & Benard, Pierre, 2014. "Low platinum, high limiting current density of the PEMFC (proton exchange membrane fuel cell) based on multilayer cathode catalyst approach," Energy, Elsevier, vol. 64(C), pages 398-403.
    11. Yang, Meijun & Zhang, Dongming, 2014. "Effect of surface treatment on the interfacial contact resistance and corrosion resistance of Fe–Ni–Cr alloy as a bipolar plate for polymer electrolyte membrane fuel cells," Energy, Elsevier, vol. 64(C), pages 242-247.
    12. Ren, Zhijun & Zhang, Dongming & Wang, Zaiyi, 2012. "Stacks with TiN/titanium as the bipolar plate for PEMFCs," Energy, Elsevier, vol. 48(1), pages 577-581.
    13. Ramiar, A. & Mahmoudi, A.H. & Esmaili, Q. & Abdollahzadeh, M., 2016. "Influence of cathode flow pulsation on performance of proton exchange membrane fuel cell with interdigitated gas distributors," Energy, Elsevier, vol. 94(C), pages 206-217.
    14. Chen, Chen-Yu & Su, Sheng-Chun, 2018. "Effects of assembly torque on a proton exchange membrane fuel cell with stamped metallic bipolar plates," Energy, Elsevier, vol. 159(C), pages 440-447.
    15. Guo, Hang & Liu, Xuan & Zhao, Jian Fu & Ye, Fang & Ma, Chong Fang, 2016. "Effect of low gravity on water removal inside proton exchange membrane fuel cells (PEMFCs) with different flow channel configurations," Energy, Elsevier, vol. 112(C), pages 926-934.
    16. Rakhshanpouri, S. & Rowshanzamir, S., 2013. "Water transport through a PEM (proton exchange membrane) fuel cell in a seven-layer model," Energy, Elsevier, vol. 50(C), pages 220-231.
    17. Abdin, Z. & Webb, C.J. & Gray, E.MacA., 2016. "PEM fuel cell model and simulation in Matlab–Simulink based on physical parameters," Energy, Elsevier, vol. 116(P1), pages 1131-1144.
    18. Parnian, Mohammad Javad & Rowshanzamir, Soosan & Gashoul, Fatemeh, 2017. "Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel ," Energy, Elsevier, vol. 125(C), pages 614-628.
    19. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    20. Okur, Osman & İyigün Karadağ, Çiğdem & Boyacı San, Fatma Gül & Okumuş, Emin & Behmenyar, Gamze, 2013. "Optimization of parameters for hot-pressing manufacture of membrane electrode assembly for PEM (polymer electrolyte membrane fuel cells) fuel cell," Energy, Elsevier, vol. 57(C), pages 574-580.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:106:y:2016:i:c:p:378-389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.