IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v87y2015icp134-141.html
   My bibliography  Save this article

Effects of porous flow field type separators using sintered Ni-based alloy powders on interfacial contact resistances and fuel cell performances

Author

Listed:
  • Kariya, Tetsuro
  • Yanagimoto, Katsu
  • Funakubo, Hiroshi
  • Shudo, Toshio

Abstract

The novel separators with a porous flow field using sintered corrosion resistant Ni-base alloy C276 (Ni–16Cr–16Mo–5Fe–4W mass%) powders or SUS316L (Fe–17Cr–12Ni–2Mo mass%) powders are investigated for proton exchange membrane fuel cells to enhance power density, which is one of the most important challenges for the widespread use of fuel cells. The developed separator with C276 powders demonstrated low ICRs (interfacial contact resistance) less than 10 mΩ cm2 between separators and GDLs (gas diffusion layers), and it extensively enhanced power density by 90% higher than a conventional graphite separator. This is due to the superior adherence mechanism between the convex surfaces of the spherical powders and porous GDLs as well as the Ni concentration in passive oxide films in powder surfaces. Furthermore, this developed separator shows potential for using without an expensive conductive coating such as Au coating, which has been usually employed to lower ICRs for metallic separators with passive oxide films. In addition, the amount of eluted Cr, which could deteriorate catalyst and cell performance, from sintered C276 powders in a 1 mass% sulfuric acid aqueous solution is reduced by approximately 82% than SUS316L powders.

Suggested Citation

  • Kariya, Tetsuro & Yanagimoto, Katsu & Funakubo, Hiroshi & Shudo, Toshio, 2015. "Effects of porous flow field type separators using sintered Ni-based alloy powders on interfacial contact resistances and fuel cell performances," Energy, Elsevier, vol. 87(C), pages 134-141.
  • Handle: RePEc:eee:energy:v:87:y:2015:i:c:p:134-141
    DOI: 10.1016/j.energy.2015.04.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215005150
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.04.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Junye, 2015. "Barriers of scaling-up fuel cells: Cost, durability and reliability," Energy, Elsevier, vol. 80(C), pages 509-521.
    2. Carton, J.G. & Lawlor, V. & Olabi, A.G. & Hochenauer, C. & Zauner, G., 2012. "Water droplet accumulation and motion in PEM (Proton Exchange Membrane) fuel cell mini-channels," Energy, Elsevier, vol. 39(1), pages 63-73.
    3. Taymaz, Imdat & Benli, Merthan, 2010. "Numerical study of assembly pressure effect on the performance of proton exchange membrane fuel cell," Energy, Elsevier, vol. 35(5), pages 2134-2140.
    4. Huang, Kaikai & Zhang, Dongming & Hu, Mingming & Hu, Qinghui, 2014. "Cr2O3/C composite coatings on stainless steel 304 as bipolar plate for proton exchange membrane fuel cell," Energy, Elsevier, vol. 76(C), pages 816-821.
    5. Iranzo, Alfredo & Boillat, Pierre & Biesdorf, Johannes & Salva, Antonio, 2015. "Investigation of the liquid water distributions in a 50 cm2 PEM fuel cell: Effects of reactants relative humidity, current density, and cathode stoichiometry," Energy, Elsevier, vol. 82(C), pages 914-921.
    6. Yang, Meijun & Zhang, Dongming, 2014. "Effect of surface treatment on the interfacial contact resistance and corrosion resistance of Fe–Ni–Cr alloy as a bipolar plate for polymer electrolyte membrane fuel cells," Energy, Elsevier, vol. 64(C), pages 242-247.
    7. Carton, J.G. & Olabi, A.G., 2010. "Design of experiment study of the parameters that affect performance of three flow plate configurations of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 35(7), pages 2796-2806.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Ben & Ke, Wandi & Luo, Maji & Wang, Jun & Tu, Zhengkai & Pan, Mu & Zhang, Haining & Liu, Xiaowei & Liu, Wei, 2015. "Operation characteristics and carbon corrosion of PEMFC (Proton exchange membrane fuel cell) with dead-ended anode for high hydrogen utilization," Energy, Elsevier, vol. 91(C), pages 799-806.
    2. Chen, Ben & Wang, Jun & Yang, Tianqi & Cai, Yonghua & Zhang, Caizhi & Chan, Siew Hwa & Yu, Yi & Tu, Zhengkai, 2016. "Carbon corrosion and performance degradation mechanism in a proton exchange membrane fuel cell with dead-ended anode and cathode," Energy, Elsevier, vol. 106(C), pages 54-62.
    3. Lian, Yunsong & Zhu, Zhengchao & You, Changtang & Lin, Liangliang & Lin, Fengtian & Lin, Le & Huang, Yating & Zhou, Wei, 2023. "Structural optimization of fiber porous self-humidifying flow field plates applied to proton exchange membrane fuel cells," Energy, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Ah-Reum & Shin, Seungho & Um, Sukkee, 2016. "Multidisciplinary approaches to metallic bipolar plate design with bypass flow fields through deformable gas diffusion media of polymer electrolyte fuel cells," Energy, Elsevier, vol. 106(C), pages 378-389.
    2. Díaz, Manuel Antonio & Iranzo, Alfredo & Rosa, Felipe & Isorna, Fernando & López, Eduardo & Bolivar, Juan Pedro, 2015. "Effect of carbon dioxide on the contamination of low temperature and high temperature PEM (polymer electrolyte membrane) fuel cells. Influence of temperature, relative humidity and analysis of regener," Energy, Elsevier, vol. 90(P1), pages 299-309.
    3. Afshari, E. & Mosharaf-Dehkordi, M. & Rajabian, H., 2017. "An investigation of the PEM fuel cells performance with partially restricted cathode flow channels and metal foam as a flow distributor," Energy, Elsevier, vol. 118(C), pages 705-715.
    4. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    5. Beltrán-Gastélum, M. & Salazar-Gastélum, M.I. & Félix-Navarro, R.M. & Pérez-Sicairos, S. & Reynoso-Soto, E.A. & Lin, S.W. & Flores-Hernández, J.R. & Romero-Castañón, T. & Albarrán-Sánchez, I.L. & Para, 2016. "Evaluation of PtAu/MWCNT (Multiwalled Carbon Nanotubes) electrocatalyst performance as cathode of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 109(C), pages 446-455.
    6. Xing, Lei & Du, Shangfeng & Chen, Rui & Mamlouk, Mohamed & Scott, Keith, 2016. "Anode partial flooding modelling of proton exchange membrane fuel cells: Model development and validation," Energy, Elsevier, vol. 96(C), pages 80-95.
    7. Rahnavard, Aylin & Rowshanzamir, Soosan & Parnian, Mohammad Javad & Amirkhanlou, Gholam Reza, 2015. "The effect of sulfonated poly (ether ether ketone) as the electrode ionomer for self-humidifying nanocomposite proton exchange membrane fuel cells," Energy, Elsevier, vol. 82(C), pages 746-757.
    8. Yang, Meijun & Zhang, Dongming, 2014. "Effect of surface treatment on the interfacial contact resistance and corrosion resistance of Fe–Ni–Cr alloy as a bipolar plate for polymer electrolyte membrane fuel cells," Energy, Elsevier, vol. 64(C), pages 242-247.
    9. Boyaci San, Fatma Gül & Isik-Gulsac, Isil & Okur, Osman, 2013. "Analysis of the polymer composite bipolar plate properties on the performance of PEMFC (polymer electrolyte membrane fuel cells) by RSM (response surface methodology)," Energy, Elsevier, vol. 55(C), pages 1067-1075.
    10. Xing, Lei & Cai, Qiong & Xu, Chenxi & Liu, Chunbo & Scott, Keith & Yan, Yongsheng, 2016. "Numerical study of the effect of relative humidity and stoichiometric flow ratio on PEM (proton exchange membrane) fuel cell performance with various channel lengths: An anode partial flooding modelli," Energy, Elsevier, vol. 106(C), pages 631-645.
    11. Hu, Qinghui & Zhang, Dongming & Fu, Hao, 2015. "Effect of flow-field dimensions on the formability of Fe–Ni–Cr alloy as bipolar plate for PEM (proton exchange membrane) fuel cell," Energy, Elsevier, vol. 83(C), pages 156-163.
    12. Parnian, Mohammad Javad & Rowshanzamir, Soosan & Gashoul, Fatemeh, 2017. "Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel ," Energy, Elsevier, vol. 125(C), pages 614-628.
    13. Okur, Osman & İyigün Karadağ, Çiğdem & Boyacı San, Fatma Gül & Okumuş, Emin & Behmenyar, Gamze, 2013. "Optimization of parameters for hot-pressing manufacture of membrane electrode assembly for PEM (polymer electrolyte membrane fuel cells) fuel cell," Energy, Elsevier, vol. 57(C), pages 574-580.
    14. Salva, J. Antonio & Iranzo, Alfredo & Rosa, Felipe & Tapia, Elvira, 2016. "Validation of cell voltage and water content in a PEM (polymer electrolyte membrane) fuel cell model using neutron imaging for different operating conditions," Energy, Elsevier, vol. 101(C), pages 100-112.
    15. Abdollahzadeh, M. & Ribeirinha, P. & Boaventura, M. & Mendes, A., 2018. "Three-dimensional modeling of PEMFC with contaminated anode fuel," Energy, Elsevier, vol. 152(C), pages 939-959.
    16. Movahedi, M. & Ramiar, A. & Ranjber, A.A., 2018. "3D numerical investigation of clamping pressure effect on the performance of proton exchange membrane fuel cell with interdigitated flow field," Energy, Elsevier, vol. 142(C), pages 617-632.
    17. Fofana, Daouda & Natarajan, Sadesh Kumar & Hamelin, Jean & Benard, Pierre, 2014. "Low platinum, high limiting current density of the PEMFC (proton exchange membrane fuel cell) based on multilayer cathode catalyst approach," Energy, Elsevier, vol. 64(C), pages 398-403.
    18. Yuan, Zhenyu & Yang, Jie & Li, Xiaoyang & Wang, Shikai, 2016. "The micro-scale analysis of the micro direct methanol fuel cell," Energy, Elsevier, vol. 100(C), pages 10-17.
    19. Yuan, Zhenyu & Zhang, Manna & Zuo, Kaiyuan & Ren, Yongqiang, 2018. "The effect of gravity on inner transport and cell performance in passive micro direct methanol fuel cell," Energy, Elsevier, vol. 150(C), pages 28-37.
    20. Bhosale, Amit C. & Rengaswamy, Raghunathan, 2019. "Interfacial contact resistance in polymer electrolyte membrane fuel cells: Recent developments and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:87:y:2015:i:c:p:134-141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.