IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v32y2007i4p418-422.html
   My bibliography  Save this article

Polymer electrolyte fuel cells based on phosphoric acid doped polybenzimidazole (PBI) membranes

Author

Listed:
  • Kongstein, O.E.
  • Berning, T.
  • Børresen, B.
  • Seland, F.
  • Tunold, R.

Abstract

In order to make fuel cells with high power density the structure and morphology for the three-dimensional gas diffusion electrodes (GDEs) are very important. A preparation technique for GDEs for phosphoric acid doped polybenzimidazole (PBI) is presented. Teflon treatment of the backing material was found to be beneficial for the performance of the electrodes, and explained by higher total porosity. In general the open circuit voltage (OCV) with PBI-based cells is 0.9V. The observed low OCV was explained by slow kinetic for the oxygen reduction and cross over of the reactants. The performance of the fuel cells is found to increase with increasing temperature; this was explained by faster reaction kinetic and higher membrane conductivity. A typical power output was 0.3–0.4Wcm−2 at 0.6V and 175°C.

Suggested Citation

  • Kongstein, O.E. & Berning, T. & Børresen, B. & Seland, F. & Tunold, R., 2007. "Polymer electrolyte fuel cells based on phosphoric acid doped polybenzimidazole (PBI) membranes," Energy, Elsevier, vol. 32(4), pages 418-422.
  • Handle: RePEc:eee:energy:v:32:y:2007:i:4:p:418-422
    DOI: 10.1016/j.energy.2006.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544206001927
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2006.07.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaggi, Vikas & Jayanti, S., 2013. "A conceptual model of a high-efficiency, stand-alone power unit based on a fuel cell stack with an integrated auto-thermal ethanol reformer," Applied Energy, Elsevier, vol. 110(C), pages 295-303.
    2. Lakshminarayana, G. & Nogami, Masayuki & Kityk, I.V., 2010. "Synthesis and characterization of anhydrous proton conducting inorganic–organic composite membranes for medium temperature proton exchange membrane fuel cells (PEMFCs)," Energy, Elsevier, vol. 35(12), pages 5260-5268.
    3. Ryu, Sung Kwan & Vinothkannan, Mohanraj & Kim, Ae Rhan & Yoo, Dong Jin, 2022. "Effect of type and stoichiometry of fuels on performance of polybenzimidazole-based proton exchange membrane fuel cells operating at the temperature range of 120–160 °C," Energy, Elsevier, vol. 238(PB).
    4. Tai, Xin Yee & Xing, Lei & Christie, Steve D.R. & Xuan, Jin, 2023. "Deep learning design of functionally graded porous electrode of proton exchange membrane fuel cells," Energy, Elsevier, vol. 283(C).
    5. Yu, Bor-Chern & Wang, Yi-Chun & Lu, Hsin-Chun & Lin, Hsiu-Li & Shih, Chao-Ming & Kumar, S. Rajesh & Lue, Shingjiang Jessie, 2017. "Hydroxide-ion selective electrolytes based on a polybenzimidazole/graphene oxide composite membrane," Energy, Elsevier, vol. 134(C), pages 802-812.
    6. Zhang, Caizhi & Liu, Zhitao & Zhou, Weijiang & Chan, Siew Hwa & Wang, Youyi, 2015. "Dynamic performance of a high-temperature PEM fuel cell – An experimental study," Energy, Elsevier, vol. 90(P2), pages 1949-1955.
    7. Yang, H.N. & Kim, W.J., 2015. "Effect of LiCl content on pore structure of catalyst layer and cell performance in high temperature polymer electrolyte membrane fuel cell," Energy, Elsevier, vol. 90(P2), pages 2038-2046.
    8. Wu, Q.X. & Pan, Z.F. & An, L., 2018. "Recent advances in alkali-doped polybenzimidazole membranes for fuel cell applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 168-183.
    9. Kim, Ah-Reum & Shin, Seungho & Um, Sukkee, 2016. "Multidisciplinary approaches to metallic bipolar plate design with bypass flow fields through deformable gas diffusion media of polymer electrolyte fuel cells," Energy, Elsevier, vol. 106(C), pages 378-389.
    10. Xing, Lei & Shi, Weidong & Su, Huaneng & Xu, Qian & Das, Prodip K. & Mao, Baodong & Scott, Keith, 2019. "Membrane electrode assemblies for PEM fuel cells: A review of functional graded design and optimization," Energy, Elsevier, vol. 177(C), pages 445-464.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:32:y:2007:i:4:p:418-422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.