IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v90y2015ip1p475-482.html
   My bibliography  Save this article

Using the multiple regression analysis with respect to ANOVA and 3D mapping to model the actual performance of PEM (proton exchange membrane) fuel cell at various operating conditions

Author

Listed:
  • Al-Hadeethi, Farqad
  • Al-Nimr, Moh'd
  • Al-Safadi, Mohammad

Abstract

The performance of PEM (proton exchange membrane) fuel cell was experimentally investigated at three temperatures (30, 50 and 70 °C), four flow rates (5, 10, 15 and 20 ml/min) and two flow patterns (co-current and counter current) in order to generate two correlations using multiple regression analysis with respect to ANOVA. Results revealed that increasing the temperature for co-current and counter current flow patterns will increase both hydrogen and oxygen diffusivities, water management and membrane conductivity. The derived mathematical correlations and three dimensional mapping (i.e. surface response) for the co-current and countercurrent flow patterns showed that there is a clear interaction among the various variables (temperatures and flow rates).

Suggested Citation

  • Al-Hadeethi, Farqad & Al-Nimr, Moh'd & Al-Safadi, Mohammad, 2015. "Using the multiple regression analysis with respect to ANOVA and 3D mapping to model the actual performance of PEM (proton exchange membrane) fuel cell at various operating conditions," Energy, Elsevier, vol. 90(P1), pages 475-482.
  • Handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:475-482
    DOI: 10.1016/j.energy.2015.07.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421500969X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.07.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iranzo, Alfredo & Boillat, Pierre & Biesdorf, Johannes & Salva, Antonio, 2015. "Investigation of the liquid water distributions in a 50 cm2 PEM fuel cell: Effects of reactants relative humidity, current density, and cathode stoichiometry," Energy, Elsevier, vol. 82(C), pages 914-921.
    2. Carton, J.G. & Lawlor, V. & Olabi, A.G. & Hochenauer, C. & Zauner, G., 2012. "Water droplet accumulation and motion in PEM (Proton Exchange Membrane) fuel cell mini-channels," Energy, Elsevier, vol. 39(1), pages 63-73.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ceran, Bartosz, 2019. "The concept of use of PV/WT/FC hybrid power generation system for smoothing the energy profile of the consumer," Energy, Elsevier, vol. 167(C), pages 853-865.
    2. Özçelep, Yasin & Sevgen, Selcuk & Samli, Ruya, 2020. "A study on the hydrogen consumption calculation of proton exchange membrane fuel cells for linearly increasing loads: Artificial Neural Networks vs Multiple Linear Regression," Renewable Energy, Elsevier, vol. 156(C), pages 570-578.
    3. Kim, Ah-Reum & Shin, Seungho & Um, Sukkee, 2016. "Multidisciplinary approaches to metallic bipolar plate design with bypass flow fields through deformable gas diffusion media of polymer electrolyte fuel cells," Energy, Elsevier, vol. 106(C), pages 378-389.
    4. Arlt, Tobias & Klages, Merle & Messerschmidt, Matthias & Scholta, Joachim & Manke, Ingo, 2017. "Influence of artificially aged gas diffusion layers on the water management of polymer electrolyte membrane fuel cells analyzed with in-operando synchrotron imaging," Energy, Elsevier, vol. 118(C), pages 502-511.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salva, J. Antonio & Iranzo, Alfredo & Rosa, Felipe & Tapia, Elvira, 2016. "Validation of cell voltage and water content in a PEM (polymer electrolyte membrane) fuel cell model using neutron imaging for different operating conditions," Energy, Elsevier, vol. 101(C), pages 100-112.
    2. Xing, Lei & Du, Shangfeng & Chen, Rui & Mamlouk, Mohamed & Scott, Keith, 2016. "Anode partial flooding modelling of proton exchange membrane fuel cells: Model development and validation," Energy, Elsevier, vol. 96(C), pages 80-95.
    3. Hu, Junming & Li, Jianqiu & Xu, Liangfei & Huang, Fusen & Ouyang, Minggao, 2016. "Analytical calculation and evaluation of water transport through a proton exchange membrane fuel cell based on a one-dimensional model," Energy, Elsevier, vol. 111(C), pages 869-883.
    4. Díaz, Manuel Antonio & Iranzo, Alfredo & Rosa, Felipe & Isorna, Fernando & López, Eduardo & Bolivar, Juan Pedro, 2015. "Effect of carbon dioxide on the contamination of low temperature and high temperature PEM (polymer electrolyte membrane) fuel cells. Influence of temperature, relative humidity and analysis of regener," Energy, Elsevier, vol. 90(P1), pages 299-309.
    5. Xing, Lei & Cai, Qiong & Xu, Chenxi & Liu, Chunbo & Scott, Keith & Yan, Yongsheng, 2016. "Numerical study of the effect of relative humidity and stoichiometric flow ratio on PEM (proton exchange membrane) fuel cell performance with various channel lengths: An anode partial flooding modelli," Energy, Elsevier, vol. 106(C), pages 631-645.
    6. Afshari, E. & Mosharaf-Dehkordi, M. & Rajabian, H., 2017. "An investigation of the PEM fuel cells performance with partially restricted cathode flow channels and metal foam as a flow distributor," Energy, Elsevier, vol. 118(C), pages 705-715.
    7. Chowdhury, Mohammad Ziauddin & Timurkutluk, Bora, 2018. "Transport phenomena of convergent and divergent serpentine flow fields for PEMFC," Energy, Elsevier, vol. 161(C), pages 104-117.
    8. Afra, Mehran & Nazari, Mohsen & Kayhani, Mohammad Hasan & Sharifpur, M. & Meyer, J.P., 2019. "3D experimental visualization of water flooding in proton exchange membrane fuel cells," Energy, Elsevier, vol. 175(C), pages 967-977.
    9. Kim, Ah-Reum & Shin, Seungho & Um, Sukkee, 2016. "Multidisciplinary approaches to metallic bipolar plate design with bypass flow fields through deformable gas diffusion media of polymer electrolyte fuel cells," Energy, Elsevier, vol. 106(C), pages 378-389.
    10. Ferreira, Rui B. & Falcão, D.S. & Oliveira, V.B. & Pinto, A.M.F.R., 2017. "1D+3D two-phase flow numerical model of a proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 203(C), pages 474-495.
    11. Kariya, Tetsuro & Yanagimoto, Katsu & Funakubo, Hiroshi & Shudo, Toshio, 2015. "Effects of porous flow field type separators using sintered Ni-based alloy powders on interfacial contact resistances and fuel cell performances," Energy, Elsevier, vol. 87(C), pages 134-141.
    12. Abdin, Z. & Webb, C.J. & Gray, E.MacA., 2016. "PEM fuel cell model and simulation in Matlab–Simulink based on physical parameters," Energy, Elsevier, vol. 116(P1), pages 1131-1144.
    13. Parnian, Mohammad Javad & Rowshanzamir, Soosan & Gashoul, Fatemeh, 2017. "Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel ," Energy, Elsevier, vol. 125(C), pages 614-628.
    14. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    15. Asadollahi, Arash & Esmaeeli, Asghar, 2018. "Simulation of condensation and liquid break-up on a micro-object with upper and lower movable walls using Lattice Boltzmann Method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 498(C), pages 33-49.
    16. Okur, Osman & İyigün Karadağ, Çiğdem & Boyacı San, Fatma Gül & Okumuş, Emin & Behmenyar, Gamze, 2013. "Optimization of parameters for hot-pressing manufacture of membrane electrode assembly for PEM (polymer electrolyte membrane fuel cells) fuel cell," Energy, Elsevier, vol. 57(C), pages 574-580.
    17. Abdollahzadeh, M. & Ribeirinha, P. & Boaventura, M. & Mendes, A., 2018. "Three-dimensional modeling of PEMFC with contaminated anode fuel," Energy, Elsevier, vol. 152(C), pages 939-959.
    18. Movahedi, M. & Ramiar, A. & Ranjber, A.A., 2018. "3D numerical investigation of clamping pressure effect on the performance of proton exchange membrane fuel cell with interdigitated flow field," Energy, Elsevier, vol. 142(C), pages 617-632.
    19. Dobersek, Danijela & Goricanec, Darko, 2014. "An experimentally evaluated magnetic device's efficiency for water-scale reduction on electric heaters," Energy, Elsevier, vol. 77(C), pages 271-278.
    20. Jung, Chi-Young & Yi, Jae-You & Yi, Sung-Chul, 2014. "On the role of the silica-containing catalyst layer for proton exchange membrane fuel cells," Energy, Elsevier, vol. 68(C), pages 794-800.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:475-482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.