Validation of a Model for Estimating the Strength of a Vortex Created from the Bound Circulation of a Vortex Generator
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Luo, Lei & Du, Wei & Wang, Songtao & Wang, Lei & Sundén, Bengt & Zhang, Xinhong, 2017. "Multi-objective optimization of a solar receiver considering both the dimple/protrusion depth and delta-winglet vortex generators," Energy, Elsevier, vol. 137(C), pages 1-19.
- Ebrahimi, Amin & Rikhtegar, Farhad & Sabaghan, Amin & Roohi, Ehsan, 2016. "Heat transfer and entropy generation in a microchannel with longitudinal vortex generators using nanofluids," Energy, Elsevier, vol. 101(C), pages 190-201.
- Rahimi, H. & Schepers, J.G. & Shen, W.Z. & García, N. Ramos & Schneider, M.S. & Micallef, D. & Ferreira, C.J. Simao & Jost, E. & Klein, L. & Herráez, I., 2018. "Evaluation of different methods for determining the angle of attack on wind turbine blades with CFD results under axial inflow conditions," Renewable Energy, Elsevier, vol. 125(C), pages 866-876.
- Xia, H.H. & Tang, G.H. & Shi, Y. & Tao, W.Q., 2014. "Simulation of heat transfer enhancement by longitudinal vortex generators in dimple heat exchangers," Energy, Elsevier, vol. 74(C), pages 27-36.
- Wang, Haipeng & Zhang, Bo & Qiu, Qinggang & Xu, Xiang, 2017. "Flow control on the NREL S809 wind turbine airfoil using vortex generators," Energy, Elsevier, vol. 118(C), pages 1210-1221.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sergio Chillon & Antxon Uriarte-Uriarte & Iñigo Aramendia & Pablo Martínez-Filgueira & Unai Fernandez-Gamiz & Iosu Ibarra-Udaeta, 2020. "jBAY Modeling of Vane-Type Vortex Generators and Study on Airfoil Aerodynamic Performance," Energies, MDPI, vol. 13(10), pages 1-15, May.
- Wenpeng Zhang & Fangping Tang & Lijian Shi & Qiujin Hu & Ying Zhou, 2020. "Effects of an Inlet Vortex on the Performance of an Axial-Flow Pump," Energies, MDPI, vol. 13(11), pages 1-23, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Choi, Seok Min & Kwon, Hyun Goo & Kim, Taehyun & Moon, Hee Koo & Cho, Hyung Hee, 2022. "Active cooling of photovoltaic (PV) cell by acoustic excitation in single-dimpled internal channel," Applied Energy, Elsevier, vol. 309(C).
- Rashidi, Saman & Hormozi, Faramarz & Sundén, Bengt & Mahian, Omid, 2019. "Energy saving in thermal energy systems using dimpled surface technology – A review on mechanisms and applications," Applied Energy, Elsevier, vol. 250(C), pages 1491-1547.
- Guoqiang, Li & Weiguo, Zhang & Yubiao, Jiang & Pengyu, Yang, 2019. "Experimental investigation of dynamic stall flow control for wind turbine airfoils using a plasma actuator," Energy, Elsevier, vol. 185(C), pages 90-101.
- Zhen Zhao & Liang Xu & Jianmin Gao & Lei Xi & Qicheng Ruan & Yunlong Li, 2022. "Multi-Objective Optimization of Parameters of Channels with Staggered Frustum of a Cone Based on Response Surface Methodology," Energies, MDPI, vol. 15(3), pages 1-19, February.
- Zhao, Zhiqi & Luo, Lei & Qiu, Dandan & Wang, Zhongqi & Sundén, Bengt, 2021. "On the solar air heater thermal enhancement and flow topology using differently shaped ribs combined with delta-winglet vortex generators," Energy, Elsevier, vol. 224(C).
- Anuar Jamaludin & Roslinda Nazar & Ioan Pop, 2019. "Mixed Convection Stagnation-Point Flow of a Nanofluid Past a Permeable Stretching/Shrinking Sheet in the Presence of Thermal Radiation and Heat Source/Sink," Energies, MDPI, vol. 12(5), pages 1-20, February.
- S. Arunvinthan & V.S. Raatan & S. Nadaraja Pillai & Amjad A. Pasha & M. M. Rahman & Khalid A. Juhany, 2021. "Aerodynamic Characteristics of Shark Scale-Based Vortex Generators upon Symmetrical Airfoil," Energies, MDPI, vol. 14(7), pages 1-22, March.
- Yang, Jian-Feng & Lin, Yuan-Sheng & Ke, Han-Bing & Zeng, Min & Wang, Qiu-Wang, 2016. "Investigation on combined multiple shell-pass shell-and-tube heat exchanger with continuous helical baffles," Energy, Elsevier, vol. 115(P3), pages 1572-1579.
- Ziya Sogut, M., 2021. "New approach for assessment of environmental effects based on entropy optimization of jet engine," Energy, Elsevier, vol. 234(C).
- Asad Ullah & Nahid Fatima & Khalid Abdulkhaliq M. Alharbi & Samia Elattar & Ikramullah & Waris Khan, 2023. "A Numerical Analysis of the Hybrid Nanofluid (Ag+TiO 2 +Water) Flow in the Presence of Heat and Radiation Fluxes," Energies, MDPI, vol. 16(3), pages 1-15, January.
- Mwesigye, Aggrey & Meyer, Josua P., 2017. "Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios," Applied Energy, Elsevier, vol. 193(C), pages 393-413.
- Serdar GENÇ, Mustafa & KOCA, Kemal & AÇIKEL, Halil Hakan, 2019. "Investigation of pre-stall flow control on wind turbine blade airfoil using roughness element," Energy, Elsevier, vol. 176(C), pages 320-334.
- Bahiraei, Mehdi & Hangi, Morteza, 2014. "Numerical simulation of nanofluid application in a C-shaped chaotic channel: A potential approach for energy efficiency improvement," Energy, Elsevier, vol. 74(C), pages 863-870.
- Rajendra S. Rajpoot & Shanmugam. Dhinakaran & Md. Mahbub Alam, 2021. "Numerical Analysis of Mixed Convective Heat Transfer from a Square Cylinder Utilizing Nanofluids with Multi-Phase Modelling Approach," Energies, MDPI, vol. 14(17), pages 1-26, September.
- Zhong, Junwei & Li, Jingyin & Liu, Huizhong, 2023. "Dynamic mode decomposition analysis of flow separation control on wind turbine airfoil using leading−edge rod," Energy, Elsevier, vol. 268(C).
- Liu, Qingsong & Miao, Weipao & Li, Chun & Hao, Winxing & Zhu, Haitian & Deng, Yunhe, 2019. "Effects of trailing-edge movable flap on aerodynamic performance and noise characteristics of VAWT," Energy, Elsevier, vol. 189(C).
- Huang, Shengxian & Hu, Yu & Wang, Ying, 2021. "Research on aerodynamic performance of a novel dolphin head-shaped bionic airfoil," Energy, Elsevier, vol. 214(C).
- Ebrahimi, Abbas & Movahhedi, Mohammadreza, 2018. "Wind turbine power improvement utilizing passive flow control with microtab," Energy, Elsevier, vol. 150(C), pages 575-582.
- Keklikcioglu, Orhan & Ozceyhan, Veysel, 2017. "Entropy generation analysis for a circular tube with equilateral triangle cross sectioned coiled-wire inserts," Energy, Elsevier, vol. 139(C), pages 65-75.
- Zhu, Chengyong & Chen, Jie & Wu, Jianghai & Wang, Tongguang, 2019. "Dynamic stall control of the wind turbine airfoil via single-row and double-row passive vortex generators," Energy, Elsevier, vol. 189(C).
More about this item
Keywords
vortex generators; turbulent boundary layer flow control; bound circulation; trailed circulation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2781-:d:249964. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.