IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p2095-d348857.html
   My bibliography  Save this article

Numerical and Experimental Analysis of the Thermal Performances of SiC/Water and Al 2 O 3 /Water Nanofluid Inside a Circular Tube with Constant-Increased-PR Twisted Tape

Author

Listed:
  • Saadah Ahmad

    (Faculty of Engineering and Built Environment, National University of Malaysia, Bangi 43600 UKM, Malaysia)

  • Shahrir Abdullah

    (Faculty of Engineering and Built Environment, National University of Malaysia, Bangi 43600 UKM, Malaysia)

  • Kamaruzzaman Sopian

    (Solar Energy Research Institute (SERI), National University of Malaysia, Bangi 43600 UKM, Malaysia)

Abstract

The simultaneous use of two passive methods (twisted tape and a nanofluid) in a heat transfer system will increase the average Nusselt number ( Nu ) of the system. However, the presence of inserts and nanoparticles inside the tube will create higher pressure drop ( ΔP ) in the system, which can eventually affect the overall enhancement ratio ( η ), especially at higher Reynolds numbers ( Re ). Several modifications of twisted tapes have been made to reduce ΔP , but most showed a decreasing trend of η as Re increased. The objective of this study is to design a new geometry of twisted tape that yields a larger value of Nu and a smaller value of ΔP, which can result in a larger value of η especially at higher Re . A simulation and experimental analysis are conducted in which Re ranges from 4000–16,000 with two types of nanofluids (SiC/Water and Al 2 O 3 /Water) at various values of the volume fraction, ( φ) (1–3%). ANSYS FLUENT software with the RNG k-ɛ turbulent model is adopted for the simulation analysis. Three types of twisted tape are used in the analysis: classic twisted tape with a pitch ratio of 2 (TT PR2), constant-increasing-pitch-ratio twisted tape (TT IPR) and constant-decreasing-pitch-ratio twisted tape (TT DPR). The use of TT IPR generates a stronger swirling flow at the inlet of the tube and smaller ∆P , especially near the outlet region. The highest value of η is obtained for 3% SiC/Water nanofluid that is flowing through a smooth circular tube with TT IPR inserts at Re of 10,000.

Suggested Citation

  • Saadah Ahmad & Shahrir Abdullah & Kamaruzzaman Sopian, 2020. "Numerical and Experimental Analysis of the Thermal Performances of SiC/Water and Al 2 O 3 /Water Nanofluid Inside a Circular Tube with Constant-Increased-PR Twisted Tape," Energies, MDPI, vol. 13(8), pages 1-24, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2095-:d:348857
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/2095/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/2095/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Godson, Lazarus & Raja, B. & Mohan Lal, D. & Wongwises, S., 2010. "Enhancement of heat transfer using nanofluids--An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 629-641, February.
    2. Ebrahimi, Amin & Rikhtegar, Farhad & Sabaghan, Amin & Roohi, Ehsan, 2016. "Heat transfer and entropy generation in a microchannel with longitudinal vortex generators using nanofluids," Energy, Elsevier, vol. 101(C), pages 190-201.
    3. Gan Liu & Chen Yang & Junhui Zhang & Huaizhi Zong & Bing Xu & Jin-yuan Qian, 2020. "Internal Flow Analysis of a Heat Transfer Enhanced Tube with a Segmented Twisted Tape Insert," Energies, MDPI, vol. 13(1), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Iqbal Shajahan & Jee Joe Michael & M. Arulprakasajothi & Sivan Suresh & Emad Abouel Nasr & H. M. A. Hussein, 2020. "Effect of Conical Strip Inserts and ZrO 2 /DI-Water Nanofluid on Heat Transfer Augmentation: An Experimental Study," Energies, MDPI, vol. 13(17), pages 1-24, September.
    2. Pasu Poonpakdee & Boonsong Samutpraphut & Chinaruk Thianpong & Suriya Chokphoemphun & Smith Eiamsa-ard & Naoki Maruyama & Masafumi Hirota, 2022. "Heat Transfer Intensification in a Heat Exchanger by Means of Twisted Tapes in Rib and Sawtooth Forms," Energies, MDPI, vol. 15(23), pages 1-17, November.
    3. Gianpiero Colangelo & Marco Milanese & Giuseppe Starace & Arturo de Risi, 2023. "Advances in the Development of New Heat Transfer Fluids Based on Nanofluids," Energies, MDPI, vol. 16(2), pages 1-3, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salman, B.H. & Mohammed, H.A. & Munisamy, K.M. & Kherbeet, A. Sh., 2013. "Characteristics of heat transfer and fluid flow in microtube and microchannel using conventional fluids and nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 848-880.
    2. Tawfik, Mohamed M., 2017. "Experimental studies of nanofluid thermal conductivity enhancement and applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1239-1253.
    3. Anuar Jamaludin & Roslinda Nazar & Ioan Pop, 2019. "Mixed Convection Stagnation-Point Flow of a Nanofluid Past a Permeable Stretching/Shrinking Sheet in the Presence of Thermal Radiation and Heat Source/Sink," Energies, MDPI, vol. 12(5), pages 1-20, February.
    4. Ziya Sogut, M., 2021. "New approach for assessment of environmental effects based on entropy optimization of jet engine," Energy, Elsevier, vol. 234(C).
    5. Asad Ullah & Nahid Fatima & Khalid Abdulkhaliq M. Alharbi & Samia Elattar & Ikramullah & Waris Khan, 2023. "A Numerical Analysis of the Hybrid Nanofluid (Ag+TiO 2 +Water) Flow in the Presence of Heat and Radiation Fluxes," Energies, MDPI, vol. 16(3), pages 1-15, January.
    6. Mwesigye, Aggrey & Meyer, Josua P., 2017. "Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios," Applied Energy, Elsevier, vol. 193(C), pages 393-413.
    7. Amaris, Carlos & Vallès, Manel & Bourouis, Mahmoud, 2018. "Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review," Applied Energy, Elsevier, vol. 231(C), pages 826-853.
    8. Azmi, W.H. & Sharif, M.Z. & Yusof, T.M. & Mamat, Rizalman & Redhwan, A.A.M., 2017. "Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 415-428.
    9. Rajendra S. Rajpoot & Shanmugam. Dhinakaran & Md. Mahbub Alam, 2021. "Numerical Analysis of Mixed Convective Heat Transfer from a Square Cylinder Utilizing Nanofluids with Multi-Phase Modelling Approach," Energies, MDPI, vol. 14(17), pages 1-26, September.
    10. Ma, Ting & Guo, Zhixiong & Lin, Mei & Wang, Qiuwang, 2021. "Recent trends on nanofluid heat transfer machine learning research applied to renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    11. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    12. Sarafraz, M.M. & Abad, A. Taghavi Khalil, 2019. "Statistical and experimental investigation on flow boiling heat transfer to carbon nanotube-therminol nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    13. Mahian, Omid & Mahmud, Shohel & Heris, Saeed Zeinali, 2012. "Analysis of entropy generation between co-rotating cylinders using nanofluids," Energy, Elsevier, vol. 44(1), pages 438-446.
    14. Janusz T. Cieśliński & Dawid Lubocki & Slawomir Smolen, 2022. "Impact of Temperature and Nanoparticle Concentration on Turbulent Forced Convective Heat Transfer of Nanofluids," Energies, MDPI, vol. 15(20), pages 1-22, October.
    15. Pawel Rozga & Abderrahmane Beroual & Piotr Przybylek & Maciej Jaroszewski & Konrad Strzelecki, 2020. "A Review on Synthetic Ester Liquids for Transformer Applications," Energies, MDPI, vol. 13(23), pages 1-33, December.
    16. Keklikcioglu, Orhan & Ozceyhan, Veysel, 2017. "Entropy generation analysis for a circular tube with equilateral triangle cross sectioned coiled-wire inserts," Energy, Elsevier, vol. 139(C), pages 65-75.
    17. Naqvi, Syed Muhammad Raza Shah & Muhammad, Taseer & Saleem, Salman & Kim, Hyun Min, 2020. "Significance of non-uniform heat generation/absorption in hydromagnetic flow of nanofluid due to stretching/shrinking disk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    18. He, Wei & Zhang, Jifang & Guo, Rui & Pei, Chenchen & Li, Hailong & Liu, Shengchun & Wei, Jie & Wang, Yulin, 2022. "Performance analysis and structural optimization of a finned liquid-cooling radiator for chip heat dissipation," Applied Energy, Elsevier, vol. 327(C).
    19. Che Sidik, Nor Azwadi & Aisyah Razali, Siti, 2014. "Lattice Boltzmann method for convective heat transfer of nanofluids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 864-875.
    20. Wu, Zan & Sundén, Bengt, 2014. "On further enhancement of single-phase and flow boiling heat transfer in micro/minichannels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 11-27.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2095-:d:348857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.