IDEAS home Printed from https://ideas.repec.org/p/rff/dpaper/dp-07-51.html
   My bibliography  Save this paper

Spatial Development and Energy Consumption

Author

Listed:
  • Safirova, Elena A.

    (Resources for the Future)

  • Houde, Sébastien
  • Harrington, Winston

Abstract

Previous literature has suggested that the urban form (i.e., city size, density, and center distribution pattern) influences urban energy consumption. It has been argued that more dense development is likely to result in more energy-efficient and sustainable cities. However, very little is known about the precise magnitude of possible energy savings from more compact urban form. Moreover, practically no research has been done to investigate which urban policies are likely to be effective in making cities more energy efficient and to quantify those potential energy savings. In this paper we discuss the potential effectiveness of urban policies at improving energy efficiency. First, we analyze several abstract scenarios suggested by the literature to see whether making a previously dispersed city more compact would result in improved energy efficiency. Then we model realistic transportation and land-use policies and examine whether those policies are likely to reduce energy consumption in the urban context.

Suggested Citation

  • Safirova, Elena A. & Houde, Sébastien & Harrington, Winston, 2007. "Spatial Development and Energy Consumption," RFF Working Paper Series dp-07-51, Resources for the Future.
  • Handle: RePEc:rff:dpaper:dp-07-51
    as

    Download full text from publisher

    File URL: http://www.rff.org/RFF/documents/RFF-DP-07-51.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anas, Alex & Xu, Rong, 1999. "Congestion, Land Use, and Job Dispersion: A General Equilibrium Model," Journal of Urban Economics, Elsevier, vol. 45(3), pages 451-473, May.
    2. Mindali, Orit & Raveh, Adi & Salomon, Ilan, 2004. "Urban density and energy consumption: a new look at old statistics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(2), pages 143-162, February.
    3. David Levinson, 1998. "Accessibility and the Journey to Work," Working Papers 199802, University of Minnesota: Nexus Research Group.
    4. Hui, Sam C.M, 2001. "Low energy building design in high density urban cities," Renewable Energy, Elsevier, vol. 24(3), pages 627-640.
    5. William P. Anderson & Pavlos S. Kanaroglou & Eric J. Miller, 1996. "Urban Form, Energy and the Environment: A Review of Issues, Evidence and Policy," Urban Studies, Urban Studies Journal Limited, vol. 33(1), pages 7-35, February.
    6. Crane, Randall & Crepeau, Richard, 1998. "Does Neighborhood Design Influence Travel?: Behavioral Analysis of Travel Diary and GIS Data," University of California Transportation Center, Working Papers qt4pj4s7t8, University of California Transportation Center.
    7. Safirova, Elena & Gillingham, Kenneth & Houde, Sébastien, 2007. "Measuring marginal congestion costs of urban transportation: Do networks matter?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(8), pages 734-749, October.
    8. Nelson, Peter & Baglino, Andrew & Harrington, Winston & Safirova, Elena & Lipman, Abram, 2007. "Transit in Washington, DC: Current benefits and optimal level of provision," Journal of Urban Economics, Elsevier, vol. 62(2), pages 231-251, September.
    9. Safirova, Elena & Gillingham, Kenneth & Parry, Ian & Nelson, Peter & Harrington, Winston & Mason, David, 2004. "8. Welfare And Distributional Effects Of Road Pricing Schemes For Metropolitan Washington Dc," Research in Transportation Economics, Elsevier, vol. 9(1), pages 179-206, January.
    10. Marlon G. Boarnet & Sharon Sarmiento, 1998. "Can Land-use Policy Really Affect Travel Behaviour? A Study of the Link between Non-work Travel and Land-use Characteristics," Urban Studies, Urban Studies Journal Limited, vol. 35(7), pages 1155-1169, June.
    11. David M. Levinson & Ajay Kumar, 1997. "Density and the Journey to Work," Growth and Change, Wiley Blackwell, vol. 28(2), pages 147-172, March.
    12. Safirova, Elena A. & Houde, Sébastien & Lipman, D. Abram & Harrington, Winston & Bagliano, Andrew D., 2006. "Congestion Pricing: Long-Term Economic and Land-Use Effects," RFF Working Paper Series dp-06-37, Resources for the Future.
    13. Boarnet, Marlon & Crane, Randall, 2001. "The influence of land use on travel behavior: specification and estimation strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(9), pages 823-845, November.
    14. Crane, Randall, 1998. "Travel By Design?," University of California Transportation Center, Working Papers qt3pc4v6jj, University of California Transportation Center.
    15. Kenneth Train, 1980. "A Structured Logit Model of Auto Ownership and Mode Choice," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(2), pages 357-370.
    16. Dermot Gately & Hiliard G. Huntington, 2002. "The Asymmetric Effects of Changes in Price and Income on Energy and Oil Demand," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 19-55.
    17. Modarres, Ali, 2003. "Polycentricity and transit service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(10), pages 841-864, December.
    18. Antonio M. Bento & Maureen L. Cropper & Ahmed Mushfiq Mobarak & Katja Vinha, 2005. "The Effects of Urban Spatial Structure on Travel Demand in the United States," The Review of Economics and Statistics, MIT Press, vol. 87(3), pages 466-478, August.
    19. Houde, Sébastien & Safirova, Elena A. & Harrington, Winston, 2007. "Washington START Transportation Model," RFF Working Paper Series dp-07-43, Resources for the Future.
    20. Lariviere, Isabelle & Lafrance, Gaetan, 1999. "Modelling the electricity consumption of cities: effect of urban density," Energy Economics, Elsevier, vol. 21(1), pages 53-66, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pareto, Vittorio Emmanuel & Pareto, Marcos Pompeu, 2008. "The urban component of the energy crisis," MPRA Paper 13989, University Library of Munich, Germany.
    2. Bernardino Romano & Francesco Zullo & Lorena Fiorini & Serena Ciabò & Alessandro Marucci, 2017. "Sprinkling: An Approach to Describe Urbanization Dynamics in Italy," Sustainability, MDPI, vol. 9(1), pages 1-17, January.
    3. Rodier, Caroline J., 2009. "A Review of the International Modeling Literature: Transit, Land Use, and Auto Pricing Strategies to Reduce Vehicle Miles Traveled and Greenhouse Gas Emissions," Institute of Transportation Studies, Working Paper Series qt2jh2m3ps, Institute of Transportation Studies, UC Davis.
    4. McCollum, David & Yang, Christopher, 2009. "Achieving deep reductions in US transport greenhouse gas emissions: Scenario analysis and policy implications," Energy Policy, Elsevier, vol. 37(12), pages 5580-5596, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tae-Hyoung Gim, 2012. "A meta-analysis of the relationship between density and travel behavior," Transportation, Springer, vol. 39(3), pages 491-519, May.
    2. Lara Engelfriet & Eric Koomen, 2018. "The impact of urban form on commuting in large Chinese cities," Transportation, Springer, vol. 45(5), pages 1269-1295, September.
    3. Bento, Antonio M. & Cropper, Maureen L. & Mobarak, Ahmed Mushfiq & Vinha, Katja, 2003. "The impact of urban spatial structure on travel demand in the United States," Policy Research Working Paper Series 3007, The World Bank.
    4. Chatman, Daniel G., 2008. "Deconstructing development density: Quality, quantity and price effects on household non-work travel," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(7), pages 1008-1030, August.
    5. Andrew Perumal & David Timmons, 2017. "Contextual Density and US Automotive CO2 Emissions across the Rural–Urban Continuum," International Regional Science Review, , vol. 40(6), pages 590-615, November.
    6. Javier Asensio, 2002. "Transport Mode Choice by Commuters to Barcelona's CBD," Urban Studies, Urban Studies Journal Limited, vol. 39(10), pages 1881-1895, September.
    7. Cao, Xinyu, 2006. "The Causal Relationship between the Built Environment and Personal Travel Choice: Evidence from Northern California," University of California Transportation Center, Working Papers qt07q5p340, University of California Transportation Center.
    8. Cao, XinYu, 2007. "The Causal Relationship between the Built Environment and Personal Travel Choice: Evidence from Northern California," Institute of Transportation Studies, Working Paper Series qt1n90z8h8, Institute of Transportation Studies, UC Davis.
    9. Clark, Thomas A., 2013. "Metropolitan density, energy efficiency and carbon emissions: Multi-attribute tradeoffs and their policy implications," Energy Policy, Elsevier, vol. 53(C), pages 413-428.
    10. Tae‐Hyoung Tommy Gim, 2021. "Quantile regression on the nonlinear relationship between land use and trip time," Papers in Regional Science, Wiley Blackwell, vol. 100(4), pages 1055-1077, August.
    11. Harrington, Winston & Safirova, Elena & Coleman, Conrad & Houde, Sebastien & Finkel, Adam M., 2014. "Distributional Consequences of Public Policies: An Example from the Management of Urban Vehicular Travel Abstract: This paper uses a spatially disaggregated computable general equilibrium model of a l," RFF Working Paper Series dp-14-04, Resources for the Future.
    12. Kim, Jinwon, 2012. "Endogenous vehicle-type choices in a monocentric city," Regional Science and Urban Economics, Elsevier, vol. 42(4), pages 749-760.
    13. Su, Qing & Zhou, Liren, 2012. "Parking management, financial subsidies to alternatives to drive alone and commute mode choices in Seattle," Regional Science and Urban Economics, Elsevier, vol. 42(1-2), pages 88-97.
    14. Cao, Xinyu (Jason) & Mokhtarian, Patricia L. & Handy, Susan L., 2009. "The relationship between the built environment and nonwork travel: A case study of Northern California," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(5), pages 548-559, June.
    15. Cynthia Chen & Hongmian Gong & Robert Paaswell, 2008. "Role of the built environment on mode choice decisions: additional evidence on the impact of density," Transportation, Springer, vol. 35(3), pages 285-299, May.
    16. Qing Su, 2017. "Travel Demand Management Policy Instruments, Urban Spatial Characteristics, and Household Greenhouse Gas Emissions from Travel in the US Urban Areas," International Journal of Energy Economics and Policy, Econjournals, vol. 7(3), pages 157-166.
    17. Safirova, Elena & Gillingham, Kenneth & Houde, Sébastien, 2007. "Measuring marginal congestion costs of urban transportation: Do networks matter?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(8), pages 734-749, October.
    18. Faizeh Hatami & Jean-Claude Thill, 2022. "Spatiotemporal Evaluation of the Built Environment’s Impact on Commuting Duration," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    19. Marshall, Julian D. & McKone, Thomas E. & Deakin, Elizabeth & Nazaroff, William W., 2006. "Inhalation of motor vehicle emissions: effects of urban population and land area," University of California Transportation Center, Working Papers qt05c0f85r, University of California Transportation Center.
    20. Tomás Ruiz & Rosa Arroyo & Lidón Mars & Daniel Casquero, 2018. "Effects of a Travel Behaviour Change Program on Sustainable Travel," Sustainability, MDPI, vol. 10(12), pages 1-22, December.

    More about this item

    Keywords

    energy consumption; urban form; general equilibrium; land use; transportation; government policy;
    All these keywords.

    JEL classification:

    • D58 - Microeconomics - - General Equilibrium and Disequilibrium - - - Computable and Other Applied General Equilibrium Models
    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • R13 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - General Equilibrium and Welfare Economic Analysis of Regional Economies
    • R14 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Land Use Patterns
    • R40 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - General
    • R5 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Regional Government Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rff:dpaper:dp-07-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Resources for the Future (email available below). General contact details of provider: https://edirc.repec.org/data/rffffus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.